z.1 Powersets

We will proceed with another axiom:

Axiom (Powersets). For any set \(A \), the set \(\wp(A) = \{ x : x \subseteq A \} \) exists.

\[
\forall A \exists P \forall x (x \in P \leftrightarrow (\forall z \in x) z \in A)
\]

Our justification for this is pretty straightforward. Suppose \(A \) is formed at stage \(S \). Then all of \(A \)'s members were available before \(S \) (by Stages-accumulate). So, reasoning as in our justification for Separation, every subset of \(A \) is formed by stage \(S \). So they are all available, to be formed into a single set, at any stage after \(S \). And we know that there is some such stage, since \(S \) is not the last stage (by Stages-keep-going). So \(\wp(A) \) exists.

Here is a nice consequence of Powersets:

Proposition z.1. Given any sets \(A, B \), their Cartesian product \(A \times B \) exists.

Proof. The set \(\wp(\wp(A \cup B)) \) exists by Powersets and ???. So by Separation, this set exists:

\[
C = \{ z \in \wp(\wp(A \cup B)) : (\exists x \in A)(\exists y \in B) z = \langle x, y \rangle \}.
\]

Now, for any \(x \in A \) and \(y \in B \), the set \(\langle x, y \rangle \) exists by ???. Moreover, since \(x, y \in A \cup B \), we have that \(\{x\}, \{x, y\} \in \wp(A \cup B) \), and \(\langle x, y \rangle \in \wp(\wp(A \cup B)) \). So \(A \times B = C \).

In this proof, Powersets interacts with Separation. And that is no surprise. Without Separation, Powersets wouldn’t be a very powerful principle. After all, Separation tells us which subsets of a set exist, and hence determines just how “fat” each Powerset is.

Problem z.1. Show that, for any sets \(A, B \): (i) the set of all relations with domain \(A \) and range \(B \) exists; and (ii) the set of all functions from \(A \) to \(B \) exists.

Problem z.2. Let \(A \) be a set, and let \(\sim \) be an equivalence relation on \(A \). Prove that the set of equivalence classes under \(\sim \) on \(A \), i.e., \(A/\sim \), exists.

Photo Credits

Bibliography