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Chapter 1

The Iterative Conception

1.1 Extensionality

sth:story:extensionality:
sec

The very first thing to say is that sets are individuated by their elements. More
precisely:

Axiom (Extensionality). If sets A and B have the same elements, then A
and B are the same set.

∀A∀B (∀x (x ∈ A↔ x ∈ B)→A = B)

We assumed this throughout ??. But it bears repeating. The Axiom of
Extensionality expresses the basic idea that a set is determined by its elements.
(So sets might be contrasted with concepts, where precisely the same objects
might fall under many different concepts.)

Why embrace this principle? Well, it is plausible to say that any denial of
Extensionality is a decision to abandon anything which might even be called set
theory. Set theory is no more nor less than the theory of extensional collections.

The real challenge in part I, though, is to lay down principles which tell us
which sets exist. And it turns out that the only truly “obvious” answer to this
question is provably wrong.

1.2 Russell’s Paradox (again)

sth:story:rus:
sec

In ??, we worked with a näıve set theory. But according to a very näıve
conception, sets are just the extensions of predicates. This näıve thought would
mandate the following principle:

Näıve Comprehension. {x : φ(x)} exists for any formula φ.

Tempting as this principle is, it is provably inconsistent. We saw this in ??,
but the result is so important, and so straightforward, that it’s worth repeating.
Verbatim.

2



Theorem 1.1 (Russell’s Paradox). There is no set R = {x : x /∈ x}

Proof. If R = {x : x /∈ x} exists, then R ∈ R iff R /∈ R, which is a contradic-
tion.

Russell discovered this result in June 1901. (He did not, though, put the
paradox in quite the form we just presented it, since he was considering Frege’s
set theory, as outlined in Grundgesetze. We will return to this in section 1.6.)
Russell wrote to Frege on June 16, 1902, explaining the inconsistency in Frege’s
system. For the correspondence, and a bit of background, see Heijenoort (1967,
pp. 124–8).

It is worth emphasising that this two-line proof is a result of pure logic.
Granted, we implicitly used a (non-logical?) axiom, Extensionality, in our no-
tation {x : x /∈ x}; for {x : φ(x)} is to be the unique (by Extensionality) set
of the φs, if one exists. But we can avoid even the hint of Extensionality, just
by stating the result as follows: there is no set whose members are exactly the
non-self-membered sets. And this has nothing much to do with sets. As Russell
himself observed, exactly similar reasoning will lead you to conclude: no man
shaves exactly the men who do not shave themselves. Or: no pug sniffs exactly
the pugs which don’t sniff themselves. And so on. Schematically, the shape of
the result is just:

¬∃x∀z(Rzx↔¬Rzz).

And that’s just a theorem (scheme) of first-order logic. Consequently, we can’t
avoid Russell’s Paradox just by tinkering with our set theory; it arises before
we even get to set theory. If we’re going to use (classical) first-order logic, we
simply have to accept that there is no set R = {x : x /∈ x}.

The upshot is this. If you want to accept Näıve Comprehension whilst
avoiding inconsistency, you cannot just tinker with the set theory. Instead,
you would have to overhaul your logic.

Of course, set theories with non-classical logics have been presented. But
they are—to say the least—non-standard. The standard approach to Russell’s
Paradox is to treat it as a straightforward non-existence proof, and then to try
to learn how to live with it. That is the approach we will follow.

1.3 Predicative and Impredicative

sth:story:predicative:
sec

The Russell set, R, was defined via {x : x /∈ x}. Spelled out more fully, R
would be the set which contains all and only those sets which are not non-self-
membered. So in defining R, we quantify over the domain which would contain
R (if it existed).

This is an impredicative definition. More generally, we might say that a
definition is impredicative iff it quantifies over a domain which contains the
object that is being defined.

In the wake of the paradoxes, Whitehead, Russell, Poincaré and Weyl re-
jected such impredicative definitions as “viciously circular”:
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An analysis of the paradoxes to be avoided shows that they all result
from a kind of vicious circle. The vicious circles in question arise
from supposing that a collection of objects may contain members
which can only be defined by means of the collection as a whole[. . . .
¶]
The principle which enables us to avoid illegitimate totalities may
be stated as follows: ‘Whatever involves all of a collection must not
be one of the collection’; or, conversely: ‘If, provided a certain col-
lection had a total, it would have members only definable in terms
of that total, then the said collection has no total.’ We shall call
this the ‘vicious-circle principle,’ because it enables us to avoid the
vicious circles involved in the assumption of illegitimate totalities.
(Whitehead and Russell, 1910, p. 37)

If we follow them in rejecting the vicious-circle principle, then we might at-
tempt to replace the disastrous Näıve Comprehension Scheme (of section 1.2)
with something like this:

Predicative Comprehension. For every formula φ quantifying only over
sets: the set′ {x : φ(x)} exists.

So long as sets′ are not sets, no contradiction will ensue.
Unfortunately, Predicative Comprehension is not very comprehensive. After

all, it introduces us to new entities, sets′. So we will have to consider formulas
which quantify over sets′. If they always yield a set′, then Russell’s paradox
will arise again, just by considering the set′ of all non-self-membered sets′. So,
pursuing the same thought, we must say that a formula quantifying over sets′

yields a corresponding set′′. And then we will need sets′′′, sets′′′′, etc. To
prevent a rash of primes, it will be easier to think of these as sets0, sets1, sets2,
sets3, sets4,. . . . And this would give us a way into the (simple) theory of types.

There are a few obvious objections against such a theory (though it is not
obvious that they are overwhelming objections). In brief: the resulting theory
is cumbersome to use; it is profligate in postulating different kinds of objects;
and it is not clear, in the end, that impredicative definitions are even all that
bad.

To bring out the last point, consider this remark from Ramsey:

we may refer to a man as the tallest in a group, thus identifying
him by means of a totality of which he is himself a member without
there being any vicious circle. (Ramsey, 1925)

Ramsey’s point is that “the tallest man in the group” is an impredicative
definition; but it is obviously perfectly kosher.

One might respond that, in this case, we could pick out the tallest person by
predicative means. For example, maybe we could just point at the man in ques-
tion. The objection against impredicative definitions, then, would clearly need
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to be limited to entities which can only be picked out impredicatively. But even
then, we would need to hear more, about why such “essential impredicativity”
would be so bad.1

Admittedly, impredicative definitions are extremely bad news, if we want
our definitions to provide us with something like a recipe for creating an object.
For, given an impredicative definition, one would genuinely be caught in a
vicious circle: to create the impredicatively specified object, one would first
need to create all the objects (including the impredicatively specified object),
since the impredicatively specified object is specified in terms of all the objects;
so one would need to create the impredicatively specified object before one had
created it itself. But again, this is only a serious objection against “essentially
impredicatively” specified sets, if we think of sets as things that we create. And
we (probably) don’t.

As such—for better or worse—the approach which became common does
not involve taking a hard line concerning (im)predicativity. Rather, it involves
what is now regarded as the cumulative-iterative approach. In the end, this will
allow us to stratify our sets into “stages”—a bit like the predicative approach
stratifies entities into sets0, sets1, sets2, . . .—but we will not postulate any
difference in kind between them.

1.4 The Cumulative-Iterative Approach

sth:story:approach:
sec

Here is a slightly fuller statement of how we will stratify sets into stages:

Sets are formed in stages. For each stage S, there are certain stages
which are before S. At stage S, each collection consisting of sets
formed at stages before S is formed into a set. There are no sets
other than the sets which are formed at stages. (Shoenfield, 1977,
p. 323)

This is a sketch of the cumulative-iterative conception of set. It will underpin
the formal set theory that we present in part I.

Let’s explore this in a little more detail. As Shoenfield describes the process,
at every stage, we form new sets from the sets which were available to us from
earlier stages. So, on Shoenfield’s picture, at the initial stage, stage 0, there
are no earlier stages, and so a fortiori there are no sets available to us from
earlier stages.2 So we form only one set: the set with no elements ∅. At stage
1, exactly one set is available to us from earlier stages, so only one new set is
{∅}. At stage 2, two sets are available to us from earlier stages, and we form
two new sets {{∅}} and {∅, {∅}}. At stage 3, four sets are available to us from
earlier stages, so we form twelve new sets. . . . As such, the cumulative-iterative
picture of the sets will look a bit like this (with numbers indicating stages):

1For more, see Linnebo (2010).
2Why should we assume that there is a first stage? See the footnote to Stages-are-ordered

in section 2.1.
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So: why should we embrace this story?

One reason is that it is a nice, tractable story. Given the demise of the most
obvious story, i.e., Näıve Comprehension, we are in want of something nice.

But the story is not just nice. We have a good reason to believe that any
set theory based on this story will be consistent. Here is why.

Given the cumulative-iterative conception of set, we form sets at stages;
and their elements must be objects which were available already. So, for any
stage S, we can form the set

RS = {x : x /∈ x and x was available before S}

The reasoning involved in proving Russell’s Paradox will now establish that RS

itself is not available before stage S. And that’s not a contradiction. Moreover,
if we embrace the cumulative-iterative conception of set, then we shouldn’t even
have expected to be able to form the Russell set itself. For that would be the
set of all non-self-membered sets that “will ever be available”. In short: the
fact that we (provably) can’t form the Russell set isn’t surprising, given the
cumulative-iterative story; it’s what we would predict.

1.5 Urelements or Not?

sth:story:urelements:
sec

In the next few chapters, we will try to extract axioms from the cumulative-
iterative conception of set. But, before going any further, we need to say
something more about urelements.

The picture of section 1.4 allowed us only to form new sets from old sets.
However, we might want to allow that certain non-sets—cows, pigs, grains of
sand, or whatever—can be elements of sets. In that case, we would start with
certain basic elements, urelements, and then say that at each stage S we would
form “all possible” sets consisting of urelements or sets formed at stages before
S (in any combination). The resulting picture would look more like this:
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So now we have a decision to take: Should we allow urelements?

Philosophically, it makes sense to include urelements in our theorising. The
main reason for this is to make our set theory applicable. To illustrate the
point, recall from ?? that we say that two sets A and B have the same size,
i.e., A ≈ B, iff there is a bijection between them. Now, if the cows in the field
and the pigs in the sty both form sets, we can offer a set-theoretical treatment
of the claim “there are as many cows as pigs”. But if we ban urelements, so
that the cows and the pigs do not form sets, then that set-theoretical treatment
will be unavailable. Indeed, we will have no straightforward ability to apply set
theory to anything other than sets themselves. (For more reasons to include
urelements, see Potter 2004, pp. vi, 24, 50–1.)

Mathematically, however, it is quite rare to allow urelements. In part, this
is because it is very slightly easier to formulate set theory without urelements.
But, occasionally, one finds more interesting justifications for excluding urele-
ment from set theory:

In accordance with the belief that set theory is the foundation of
mathematics, we should be able to capture all of mathematics by
just talking about sets, so our variable should not range over objects
like cows and pigs. (Kunen, 1980, p. 8)

So: a focus on applicability would suggest including urelements; a focus on a
reductive foundational goal (reducing mathematics to pure set theory) might
suggest excluding them. Mild laziness, too, points in the direction of excluding
urelements.

We will follow the laziest path. Partly, though, there is a pedagogical
justification. Our aim is to introduce you to the elements of set theory that
you would need in order to get started on the philosophy of set theory. And
most of that philosophical literature discusses set theories formulated without
urelements. So this book will, perhaps, be of more use, if it hews fairly closely
to that literature.
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1.6 Appendix: Frege’s Basic Law V

sth:story:blv:
sec

In section 1.2, we explained that Russell’s formulated his paradox as a problem
for the system Frege outlined in his Grundgesetze. Frege’s system did not
include a direct formulation of Näıve Comprehension. So, in this appendix, we
will very briefly explain what Frege’s system did include, and how it relates to
Näıve Comprehension and how it relates to Russell’s Paradox.

Frege’s system is second-order, and was designed to formulate the notion
of an extension of a concept. Using notation inspired by Frege, we will write
ϵxF (x) for the extension of the concept F . This is a device which takes a
predicate, “F”, and turns it into a (first-order) term, “ϵxF (x)”. Using this
device, Frege offered the following definition of membership:

a ∈ b =df ∃G(b = ϵxG(x) ∧Ga)

roughly: a ∈ b iff a falls under a concept whose extension is b. (Note that the
quantifier “∃G” is second-order.) Frege also maintained the following principle,
known as Basic Law V :

ϵxF (x) = ϵxG(x)↔∀x(Fx↔Gx)

roughly: concepts have identical extensions iff they are coextensive. (Again,
both “F” and “G” are in predicate position.) Now a simple principle connects
membership with property-satisfaction:

Lemma 1.2 (in Grundgesetze). sth:story:blv:

lem:Fregeextensions

∀F∀a(a ∈ ϵxF (x)↔ Fa)

Proof. Fix F and a. Now a ∈ ϵxF (x) iff ∃G(ϵxF (x) = ϵxG(x) ∧Ga) (by the
definition of membership) iff ∃G(∀x(Fx↔Gx) ∧Ga) (by Basic Law V) iff Fa
(by elementary second-order logic).

And this yields Näıve Comprehension almost immediately:

Lemma 1.3 (in Grundgesetze.). ∀F∃s∀a(a ∈ s↔ Fa)

Proof. Fix F ; now Lemma 1.2 yields ∀a(a ∈ ϵxF (x)↔Fa); so ∃s∀a(a ∈ s↔Fa)
by existential generalisation. The result follows since F was arbitrary.

Russell’s Paradox follows by taking F as given by ∀x(Fx↔ x /∈ x).

8 set-theory rev: c9d2ed6 (2023-09-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Chapter 2

Steps towards Z

2.1 The Story in More Detail

sth:z:story:
sec

In section 1.4, we quoted Schoenfield’s description of the process of set-formation.
We now want to write down a few more principles, to make this story a bit
more precise. Here they are:

Stages-are-key. Every set is formed at some stage.

Stages-are-ordered. Stages are ordered: some come before others.1

Stages-accumulate. For any stage S, and for any sets which were formed
before stage S: a set is formed at stage S whose members are exactly
those sets. Nothing else is formed at stage S.

These are informal principles, but we will be able to use them to vindicate
several of the axioms of Zermelo’s set theory.

(We should offer a word of caution. Although we will be presenting some
completely standard axioms, with completely standard names, the italicized
principles we have just presented have no particular names in the literature.
We simply monikers which we hope are helpful.)

2.2 Separation

sth:z:sep:
sec

We start with a principle to replace Näıve Comprehension:

Axiom (Scheme of Separation). For every formula φ(x), this is an axiom:
for any A, the set {x ∈ A : φ(x)} exists.

1We will actually assume—tacitly—that the stages are well-ordered. What this amounts
to is explained in chapter 3. This is a substantial assumption. In fact, using a very clever
technique due to Scott (1974), this assumption can be avoided and then derived. (This will
also explain why we should think that there is an initial stage.) We cannot go into that here;
for more, see Button (forthcoming).
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Note that this is not a single axiom. It is a scheme of axioms. There are
infinitely many Separation axioms; one for every formula φ(x). The scheme
can equally well be (and normally is) written down as follows:

For any formula φ(x) which does not contain “S”, this is an axiom:

∀A∃S∀x(x ∈ S↔ (φ(x) ∧ x ∈ A)).

In keeping with the convention noted at the start of part I, the formulas φ
in the Separation axioms may have parameters.2

Separation is immediately justified by our cumulative-iterative conception
of sets we have been telling. To see why, let A be a set. So A is formed
by some stage S (by Stages-are-key). Since A was formed at stage S, all
of A’s members were formed before stage S (by Stages-accumulate). Now in
particular, consider all the sets which are members of A and which also satisfy
φ; clearly all of these sets, too, were formed before stage S. So they are formed
into a set {x ∈ A : φ(x)} at stage S too (by Stages-accumulate).

Unlike Näıve Comprehension, this avoid Russell’s Paradox. For we cannot
simply assert the existence of the set {x : x /∈ x}. Rather, given some set A, we
can assert the existence of the set RA = {x ∈ A : x /∈ x}. But all this proves
is that RA /∈ RA and RA /∈ A, none of which is very worrying.

However, Separation has an immediate and striking consequence:

Theorem 2.1. sth:z:sep:

thm:NoUniversalSet

There is no universal set, i.e., {x : x = x} does not exist.

Proof. For reductio, suppose V is a universal set. Then by Separation, R =
{x ∈ V : x /∈ x} = {x : x /∈ x} exists, contradicting Russell’s Paradox.

The absence of a universal set—indeed, the open-endedness of the hierarchy
of sets—is one of the most fundamental ideas behind the cumulative-iterative
conception. So it is worth seeing that, intuitively, we could reach it via a
different route. A universal set must be an element of itself. But, on our
cumulative-iterative conception, every set appears (for the first time) in the
hierarchy at the first stage immediately after all of its elements. But this
entails that no set is self-membered. For any self-membered set would have
to first occur immediately after the stage at which it first occurred, which is
absurd. (We will see in Definition 4.15 how to make this explanation more
rigorous, by using the notion of the “rank” of a set. However, we will need to
have a few more axioms in place to do this.)

Here are a few more consequences of Separation and Extensionality.

Proposition 2.2. sth:z:sep:

prop:emptyexists

If any set exists, then ∅ exists.

Proof. If A is a set, ∅ = {x ∈ A : x ̸= x} exists by Separation.

2For an explanation of what this means, see the discussion immediately after ??.
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Proposition 2.3. A \B exists for any sets A and B

Proof. A \B = {x ∈ A : x /∈ B} exists by Separation.

It also turns out that (almost) arbitrary intersections exist:

Proposition 2.4.sth:z:sep:

prop:intersectionsexist

If A ̸= ∅, then
⋂
A = {x : (∀y ∈ A)x ∈ y} exists.

Proof. Let A ̸= ∅, so there is some c ∈ A. Then
⋂
A = {x : (∀y ∈ A)x ∈ y} =

{x ∈ c : (∀y ∈ A)x ∈ y}, which exists by Separation.

Note the condition that A ̸= ∅, though; for
⋂
∅ would be the universal set,

vacuously, contradicting Theorem 2.1.

2.3 Union

sth:z:union:
sec

Proposition 2.4 gave us intersections. But if we want arbitrary unions to exist,
we need to lay down another axiom:

Axiom (Union). For any set A, the set
⋃
A = {x : (∃b ∈ A)x ∈ b} exists.

∀A∃U∀x(x ∈ U ↔ (∃b ∈ A)x ∈ b)

This axiom is also justified by the cumulative-iterative conception. Let A
be a set, so A is formed at some stage S (by Stages-are-key). Every member of
A was formed before S (by Stages-accumulate); so, reasoning similarly, every
member of every member of A was formed before S. Thus all of those sets are
available before S, to be formed into a set at S. And that set is just

⋃
A.

2.4 Pairs

sth:z:pairs:
sec

The next axiom to consider is the following:

Axiom (Pairs). For any sets a, b, the set {a, b} exists.

∀a∀b∃P∀x(x ∈ P ↔ (x = a ∨ x = b))

Here is how to justify this axiom, using the iterative conception. Suppose
a is available at stage S, and b is available at stage T . Let M be whichever of
stages S and T comes later. Then since a and b are both available at stage M ,
the set {a, b} is a possible collection available at any stage after M (whichever
is the greater).

But hold on! Why assume that there are any stages after M? If there are
none, then our justification will fail. So, to justify Pairs, we will have to add
another principle to the story we told in section 2.1, namely:

Stages-keep-going. There is no last stage.
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Is this principle justified? Nothing in Shoenfield’s story stated explicitly that
there is no last stage. Still, even if it is (strictly speaking) an extra addition to
our story, it fits well with the basic idea that sets are formed in stages. We will
simply accept it in what follows. And so, we will accept the Axiom of Pairs
too.

Armed with this new Axiom, we can prove the existence of plenty more
sets. For example:

Proposition 2.5. sth:z:pairs:

prop:pairsconsequences

For any sets a and b, the following sets exist:

1. sth:z:pairs:

singleton

{a}

2. sth:z:pairs:

binunion

a ∪ b

3. sth:z:pairs:

tuples

⟨a, b⟩

Proof. (1). By Pairs, {a, a} exists, which is {a} by Extensionality.
(2). By Pairs, {a, b} exists. Now a ∪ b =

⋃
{a, b} exists by Union.

(3). By (1), {a} exists. By Pairs, {a, b} exists. Now {{a}, {a, b}} = ⟨a, b⟩
exists, by Pairs again.

Problem 2.1. Show that, for any sets a, b, c, the set {a, b, c} exists.

Problem 2.2. Show that, for any sets a1, . . . , an, the set {a1, . . . , an} exists.

2.5 Powersets

sth:z:power:
sec

We will proceed with another axiom:

Axiom (Powersets). For any set A, the set ℘(A) = {x : x ⊆ A} exists.

∀A∃P∀x(x ∈ P ↔ (∀z ∈ x)z ∈ A)

Our justification for this is pretty straightforward. Suppose A is formed
at stage S. Then all of A’s members were available before S (by Stages-
accumulate). So, reasoning as in our justification for Separation, every subset
of A is formed by stage S. So they are all available, to be formed into a single
set, at any stage after S. And we know that there is some such stage, since S
is not the last stage (by Stages-keep-going). So ℘(A) exists.

Here is a nice consequence of Powersets:

Proposition 2.6. Given any sets A,B, their Cartesian product A×B exists.

Proof. The set ℘(℘(A ∪ B)) exists by Powersets and Proposition 2.5. So by
Separation, this set exists:

C = {z ∈ ℘(℘(A ∪B)) : (∃x ∈ A)(∃y ∈ B)z = ⟨x, y⟩}.

Now, for any x ∈ A and y ∈ B, the set ⟨x, y⟩ exists by Proposition 2.5.
Moreover, since x, y ∈ A∪B, we have that {x}, {x, y} ∈ ℘(A∪B), and ⟨x, y⟩ ∈
℘(℘(A ∪B)). So A×B = C.
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In this proof, Powerset interacts with Separation. And that is no surprise.
Without Separation, Powersets wouldn’t be a very powerful principle. After
all, Separation tells us which subsets of a set exist, and hence determines just
how “fat” each Powerset is.

Problem 2.3. Show that, for any sets A,B: (i) the set of all relations with
domain A and range B exists; and (ii) the set of all functions from A to B
exists.

Problem 2.4. Let A be a set, and let ∼ be an equivalence relation on A.
Prove that the set of equivalence classes under ∼ on A, i.e., A/∼, exists.

2.6 Infinity

sth:z:infinity-again:
sec

We already have enough axioms to ensure that there are infinitely many sets (if
there are any). For suppose some set exists, and so ∅ exists (by Proposition 2.2).
Now for any set x, the set x ∪ {x} exists by Proposition 2.5. So, applying this
a few times, we will get sets as follows:

0. ∅

1. {∅}

2. {∅, {∅}}

3. {∅, {∅}, {∅, {∅}}}

4. {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}

and we can check that each of these sets is distinct.

We have started the numbering from 0, for a few reasons. But one of them
is this. It is not that hard to check that the set we have labelled “n” has exactly
n members, and (intuitively) is formed at the nth stage.

But. This gives us infinitely many sets, but it does not guarantee that
there is an infinite set, i.e., a set with infinitely many members. And this really
matters: unless we can find a (Dedekind) infinite set, we cannot construct a
Dedekind algebra. But we want a Dedekind algebra, so that we can treat it as
the set of natural numbers. (Compare ??.)

Importantly, the axioms we have laid down so far do not guarantee the
existence of any infinite set. So we have to lay down a new axiom:

Axiom (Infinity). There is a set, I, such that ∅ ∈ I and x∪{x} ∈ I whenever
x ∈ I.

∃I((∃o ∈ I)∀x x /∈ o ∧
(∀x ∈ I)(∃s ∈ I)∀z(z ∈ s↔ (z ∈ x ∨ z = x)))
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It is easy to see that the set I given to us by the Axiom of Infinity is
Dedekind infinite. Its distinguished element is ∅, and the injection on I is given
by s(x) = x ∪ {x}. Now, ?? showed how to extract a Dedekind Algebra from
a Dedekind infinite set; and we will treat this as our set of natural numbers.
More precisely:

Definition 2.7. sth:z:infinity-again:

defnomega

Let I be any set given to us by the Axiom of Infinity. Let s
be the function s(x) = x∪{x}. Let ω = clos(∅). We call the members of ω the
natural numbers, and say that n is the result of n-many applications of s to ∅.

You can now look back and check that the set labelled “n”, a few paragraphs
earlier, will be treated as the number n.

We will discuss this significance of this stipulation in section 2.8. For now,
it enables us to prove an intuitive result:

Proposition 2.8. sth:z:infinity-again:

naturalnumbersarentinfinite

No natural number is Dedekind infinite.

Proof. The proof is by induction, i.e., ??. Clearly 0 = ∅ is not Dedekind infi-
nite. For the induction step, we will establish the contrapositive: if (absurdly)
s(n) is Dedekind infinite, then n is Dedekind infinite.

So suppose that s(n) is Dedekind infinite, i.e., there is some injection f
with ran(f) ⊊ dom(f) = s(n) = n ∪ {n}. There are two cases to consider.

Case 1: n /∈ ran(f). So ran(f) ⊆ n, and f(n) ∈ n. Let g = f↾n; now
ran(g) = ran(f) \ {f(n)} ⊊ n = dom(g). Hence n is Dedekind infinite.

Case 2: n ∈ ran(f). Fix m ∈ dom(f)\ ran(f), and define a function h with
domain s(n) = n ∪ {n}:

h(x) =

{
f(x) if f(x) ̸= n

m if f(x) = n

So h and f agree everywhere, except that h(f−1(n)) = m ̸= n = f(f−1(n)).
Since f is an injection, n /∈ ran(h); and ran(h) ⊊ dom(h) = s(n). Now n is
Dedekind infinite, using the argument of Case 1.

The question remains, though, of how we might justify the Axiom of Infinity.
The short answer is that we will need to add another principle to the story we
have been telling. That principle is as follows:

Stages-hit-infinity. There is an infinite stage. That is, there is a stage
which (a) is not the first stage, and which (b) has some stages before it,
but which (c) has no immediate predecessor.

The Axiom of Infinity follows straightforwardly from this principle. We know
that natural number n is formed at stage n. So the set ω is formed at the first
infinite stage. And ω itself witnesses the Axiom of Infinity.

This, however, simply pushes us back to the question of how we might
justify Stages-hit-infinity. As with Stages-keep-going, it was not an explicit
part of the story we told about the cumulative-iterative hierarchy. But more
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than that: nothing in the very idea of an iterative hierarchy, in which sets are
formed stage by stage, forces us to think that the process involves an infinite
stage. It seems perfectly coherent to think that the stages are ordered like the
natural numbers.

This, however, gives rise to an obvious problem. In ??, we considered
Dedekind’s “proof” that there is a Dedekind infinite set (of thoughts). This
may not have struck you as very satisfying. But if Stages-hit-infinity is not
“forced upon us” by the iterative conception of set (or by “the laws of thought”),
then we are still left without an intrinsic justification for the claim that there
is a Dedekind infinite set.

There is much more to say here, of course. But hopefully you are now at
a point to start thinking about what it might take to justify an axiom (or
principle). In what follows we will simply take Stages-hit-infinity for granted.

2.7 Z−: a Milestone

sth:z:milestone:
sec

We will revisit Stages-hit-infinity in the next section. However, with the Axiom
of Infinity, we have reached an important milestone. We now have all the
axioms required for the theory Z−. In detail:

Definition 2.9. The theory Z− has these axioms: Extensionality, Union,
Pairs, Powersets, Infinity, and all instances of the Separation scheme.

The name stands for Zermelo set theory (minus something which we will
come to later). Zermelo deserves the honour, since he essentially formulated
this theory in his 1908.3

This theory is powerful enough to allow us to do an enormous amount
of mathematics. In particular, you should look back through ??, and con-
vince yourself that everything we did, näıvely, could be done more formally
within Z−. (Once you have done that for a bit, you might want to skip ahead
and read section 2.9.) So, henceforth, and without any further comment, we
will take ourselves to be working in Z− (at least).

2.8 Selecting our Natural Numbers

sth:z:nat:
sec

In Definition 2.7, we explicitly defined the expression “natural numbers”. How
should you understand this stipulation? It is not a metaphysical claim, but
just a decision to treat certain sets as the natural numbers. We touched upon
reasons for thinking this in ??, ?? and ??. But we can make these reasons even
more pointed.

Our Axiom of Infinity follows von Neumann (1925). But here is another
axiom, which we could have adopted instead:

3For interesting comments on the history and technicalities, see Potter (2004, Appendix
A).
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Zermelo’s 1908 Axiom of Infinity. There is a set A such that ∅ ∈ A and
(∀x ∈ A){x} ∈ A.

Had we used Zermelo’s axiom, instead of our (von Neumann-inspired) Ax-
iom of Infinity, we would equally well have been given a Dedekind infinite set,
and so a Dedekind algebra. On Zermelo’s approach, the distinguished element
of our algebra would again have been ∅ (our surrogate for 0), but the injection
would have been given by the map x 7→ {x}, rather than x 7→ x ∪ {x}. The
simplest upshot of this is that Zermelo treats 2 as {{∅}}, whereas we (with von
Neumann) treat 2 as {∅, {∅}}.

Why choose one axiom of Infinity rather than the other? The main prac-
tical reason is that von Neumann’s approach “scales up” to handle transfinite
numbers rather well. We will explore this from chapter 3 onwards. However,
from the simple perspective of doing arithmetic, both approaches would do
equally well. So if someone tells you that the natural numbers are sets, the
obvious question is: Which sets are they?

This precise question was made famous by Benacerraf (1965). But it is
worth emphasising that it is just the most famous example of a phenomenon
that we have encountered many times already. The basic point is this. Set
theory gives us a way to simulate a bunch of “intuitive” kinds of entities: the
reals, rationals, integers, and naturals, yes; but also ordered pairs, functions,
and relations. However, set theory never provides us with a unique choice
of simulation. There are always alternatives which—straightforwardly—would
have served us just as well.

2.9 Appendix: Closure, Comprehension, and
Intersection

sth:z:arbintersections:
sec

In section 2.7, we suggested that you should look back through the näıve work
of ?? and check that it can be carried out in Z−. If you followed that advice,
one point might have tripped you up: the use of intersection in Dedekind’s
treatment of closures.

Recall from ?? that

clof (o) =
⋂

{X : o ∈ X and X is f -closed}.

The general shape of this is a definition of the form:

C =
⋂

{X : φ(X)}.

But this should ring alarm bells: since Näıve Comprehension fails, there is
no guarantee that {X : φ(X)} exists. It looks dangerously, then, like such
definitions are cheating.
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Fortunately, they are not cheating; or rather, if they are cheating as they
stand, then we can engage in some honest toil to render them kosher. That
honest toil was foreshadowed in Proposition 2.4, when we explained why

⋂
A

exists for any A ̸= ∅. But we will spell it out explicitly.
Given Extensionality, if we attempt to define C as

⋂
{X : φ(X)}, all we are

really asking is for an object C which obeys the following:

sth:z:arbintersections:

bicondelimarbintersection

∀x(x ∈ C ↔∀X(φ(X)→ x ∈ X)) (*)

Now, suppose there is some set, S, such that φ(S). Then to deliver eq. (*), we
can simply define C using Separation, as follows:

C = {x ∈ S : ∀X(φ(X)→ x ∈ X)}.

We leave it as an exercise to check that this definition yields eq. (*), as desired.
And this general strategy will allow us to circumvent any apparent use of Näıve
Comprehension in defining intersections. In the particular case which got us
started on this line of thought, namely that of clof (o), here is how that would
work. We began the proof of ?? by noting that o ∈ ran(f) ∪ {o} and that
ran(f) ∪ {o} is f -closed. So, we can define what we want thus:

clof (o) = {x ∈ ran(f) ∪ {o} : (∀X ∋ o)(X is f -closed→ x ∈ X)}.
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Chapter 3

Ordinals

3.1 Introduction

sth:ordinals:intro:
sec

In chapter 2, we postulated that there is an infinite-th stage of the hierarchy,
in the form of Stages-hit-infinity (see also our axiom of Infinity). However,
given Stages-keep-going , we can’t stop at the infinite-th stage; we have to keep
going. So: at the next stage after the first infinite stage, we form all possible
collections of sets that were available at the first infinite stage; and repeat; and
repeat; and repeat; . . .

Implicitly what has happened here is that we have started to invoke an
“intuitive” notion of number, according to which there can be numbers after all
the natural numbers. In particular, the notion involved is that of a transfinite
ordinal. The aim of this chapter is to make this idea more rigorous. We will
explore the general notion of an ordinal, and then explicitly define certain sets
to be our ordinals.

3.2 The General Idea of an Ordinal

sth:ordinals:idea:
sec

Consider the natural numbers, in their usual order:

0 < 1 < 2 < 3 < 4 < 5 < . . .

We call this, in the jargon, an ω-sequence. And indeed, this general ordering
is mirrored in our initial construction of the stages of the set hierarchy. But,
now suppose we move 0 to the end of this sequence, so that it comes after all
the other numbers:

1 < 2 < 3 < 4 < 5 < . . . < 0

We have the same entities here, but ordered in a fundamentally different way:
our first ordering had no last element; our new ordering does. Indeed, our
new ordering consists of an ω-sequence of entities (1, 2, 3, 4, 5, . . .), followed by
another entity. It will be an ω + 1-sequence.

18



We can generate even more types of ordering, using just these entities. For
example, consider all the even numbers (in their natural order) followed by all
the odd numbers (in their natural order):

0 < 2 < 4 < . . . < 1 < 3 < . . .

This is an ω-sequence followed by another ω-sequence; an ω + ω-sequence.
Well, we can keep going. But what we would like is a general way to

understand this talk about orderings.

3.3 Well-Orderings

sth:ordinals:wo:
sec

The fundamental notion is as follows:

Definition 3.1. The relation < well-orders A iff it meets these two conditions:

1. < is connected, i.e., for all a, b ∈ A, either a < b or a = b or b < a;

2. every non-empty subset of A has a <-minimal element, i.e., if ∅ ≠ X ⊆ A
then (∃m ∈ X)(∀z ∈ X)z ≮ m

It is easy to see that three examples we just considered were indeed well-
ordering relations.

Problem 3.1. Section 3.2 presented three example orderings on the natural
numbers. Check that each is a well-ordering.

Here are some elementary but extremely important observations concerning
well-ordering.

Proposition 3.2.sth:ordinals:wo:

wo:strictorder

If < well-orders A, then every non-empty subset of A has
a unique <-least member, and < is irreflexive, asymmetric and transitive.

Proof. If X is a non-empty subset of A, it has a <-minimal element m, i.e.,
(∀z ∈ X)z ≮ m. Since < is connected, (∀z ∈ X)m ≤ z. So m is the <-least
element of X.

For irreflexivity, fix a ∈ A; the <-least element of {a} is a, so a ≮ a. For
transitivity, if a < b < c, then since {a, b, c} has a <-least element, a < c.
Asymmetry follows from irreflexivity and transitivity

Proposition 3.3.sth:ordinals:wo:

propwoinduction

If < well-orders A, then for any formula φ(x):

if (∀a ∈ A)((∀b < a)φ(b)→ φ(a)), then (∀a ∈ A)φ(a).

Proof. We will prove the contrapositive. Suppose ¬(∀a ∈ A)φ(a), i.e., that
X = {x ∈ A : ¬φ(x)} ̸= ∅. Then X has an <-minimal element, a. So
(∀b < a)φ(b) but ¬φ(a).
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This last property should remind you of the principle of strong induction on
the naturals, i.e.: if (∀n ∈ ω)((∀m < n)φ(m)→φ(n)), then (∀n ∈ ω)φ(n). And
this property makes well-ordering into a very robust notion.1

3.4 Order-Isomorphisms

sth:ordinals:iso:
sec

To explain how robust well-ordering is, we will start by introducing a method
for comparing well-orderings.

Definition 3.4. A well-ordering is a pair ⟨A,<⟩, such that < well-orders A.
The well-orderings ⟨A,<⟩ and ⟨B,⋖⟩ are order-isomorphic iff there is a bi-
jection f : A → B such that: x < y iff f(x) ⋖ f(y). In this case, we write
⟨A,<⟩ ∼= ⟨B,⋖⟩, and say that f is an order-isomorphism.

In what follows, for brevity, we will speak of “isomorphisms” rather than
“order-isomorphisms”. Intuitively, isomorphisms are structure-preserving bi-
jections. Here are some simple facts about isomorphisms.

Lemma 3.5. sth:ordinals:iso:

isoscompose

Compositions of isomorphisms are isomorphisms, i.e.: if f : A→
B and g : B → C are isomorphisms, then (g ◦ f) : A→ C is an isomorphism.

Problem 3.2. Prove Lemma 3.5.

Proof. Left as an exercise.

Corollary 3.6. sth:ordinals:iso:

ordisoisequiv

X ∼= Y is an equivalence relation.

Proposition 3.7. sth:ordinals:iso:

ordisounique

If ⟨A,<⟩ and ⟨B,⋖⟩ are isomorphic well-orderings, then
the isomorphism between them is unique.

Proof. Let f and g be isomorphisms A → B. We will prove the result by
induction, i.e. using Proposition 3.3. Fix a ∈ A, and suppose (for induction)
that (∀b < a)f(b) = g(b). Fix x ∈ B.

If x ⋖ f(a), then f−1(x) < a, so g(f−1(x)) ⋖ g(a), invoking the fact that
f and g are isomorphisms. But since f−1(x) < a, by our supposition x =
f(f−1(x)) = g(f−1(x)). So x⋖ g(a). Similarly, if x⋖ g(a) then x⋖ f(a).

Generalising, (∀x ∈ B)(x ⋖ f(a) ↔ x ⋖ g(a)). It follows that f(a) = g(a)
by ??. So (∀a ∈ A)f(a) = g(a) by Proposition 3.3.

This gives some sense that well-orderings are robust. But to continue explaining
this, it will help to introduce some more notation.

Definition 3.8. When ⟨A,<⟩ is a well-ordering with a ∈ A, let Aa = {x ∈
A : x < a}. We say that Aa is a proper initial segment of A (and allow that
A itself is an improper initial segment of A). Let <a be the restriction of < to
the initial segment, i.e., <↾A2

a
.

1A reminder: all formulas can have parameters (unless explicitly stated otherwise).
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Using this notation, we can state and prove that no well-ordering is isomorphic
to any of its proper initial segments.

Lemma 3.9.sth:ordinals:iso:

wellordnotinitial

If ⟨A,<⟩ is a well-ordering with a ∈ A, then ⟨A,<⟩ ≇ ⟨Aa, <a⟩

Proof. For reductio, suppose f : A → Aa is an isomorphism. Since f is a
bijection and Aa ⊊ A, using Proposition 3.2 let b ∈ A be the <-least element
of A such that b ̸= f(b). We’ll show that (∀x ∈ A)(x < b↔ x < f(b)), from
which it will follow by ?? that b = f(b), completing the reductio.

Suppose x < b. So x = f(x), by the choice of b. And f(x) < f(b), as f is
an isomorphism. So x < f(b).

Suppose x < f(b). So f−1(x) < b, since f is an isomorphism, and so
f−1(x) = x by the choice of b. So x < b.

Our next result shows, roughly put, that an “initial segment” of an isomor-
phism is an isomorphism:

Lemma 3.10.sth:ordinals:iso:

wellordinitialsegment

Let ⟨A,<⟩ and ⟨B,⋖⟩ be well-orderings. If f : A → B is an
isomorphism and a ∈ A, then f↾Aa

: Aa → Bf(a) is an isomorphism.

Proof. Since f is an isomorphism:

f [Aa] = f [{x ∈ A : x < a}]
= f [{f−1(y) ∈ A : f−1(y) < a}]
= {y ∈ B : y ⋖ f(a)}
= Bf(a)

And f↾Aa
preserves order because f does.

Our next two results establish that well-orderings are always comparable:

Lemma 3.11.sth:ordinals:iso:

lemordsegments

Let ⟨A,<⟩ and ⟨B,⋖⟩ be well-orderings. If ⟨Aa1 , <a1⟩ ∼=
⟨Bb1 ,⋖b1⟩ and ⟨Aa2

, <a2
⟩ ∼= ⟨Bb2 ,⋖b2⟩, then a1 < a2 iff b1 ⋖ b2

Proof. We will prove left to right ; the other direction is similar. Suppose both
⟨Aa1

, <a1
⟩ ∼= ⟨Bb1 ,⋖b1⟩ and ⟨Aa2

, <a2
⟩ ∼= ⟨Bb2 ,⋖b2⟩, with f : Aa2

→ Bb2 our
isomorphism. Let a1 < a2; then ⟨Aa1

, <a1
⟩ ∼= ⟨Bf(a1),⋖f(a1)⟩ by Lemma 3.10.

So ⟨Bb1 ,⋖b1⟩ ∼= ⟨Bf(a1),⋖f(a1)⟩, and so b1 = f(a1) by Lemma 3.9. Now b1⋖ b2
as f ’s domain is Bb2 .

Theorem 3.12.sth:ordinals:iso:

thm:woalwayscomparable

Given any two well-orderings, one is isomorphic to an initial
segment (not necessarily proper) of the other.

Proof. Let ⟨A,<⟩ and ⟨B,⋖⟩ be well-orderings. Using Separation, let

f = {⟨a, b⟩ ∈ A×B : ⟨Aa, <a⟩ ∼= ⟨Bb,⋖b⟩}.

By Lemma 3.11, a1 < a2 iff b1⋖b2 for all ⟨a1, b1⟩, ⟨a2, b2⟩ ∈ f . So f : dom(f) →
ran(f) is an isomorphism.
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If a2 ∈ dom(f) and a1 < a2, then a1 ∈ dom(f) by Lemma 3.10; so dom(f)
is an initial segment of A. Similarly, ran(f) is an initial segment of B. For
reductio, suppose both are proper initial segments. Then let a be the <-least
element of A \ dom(f), so that dom(f) = Aa, and let b be the ⋖-least element
of B \ ran(f), so that ran(f) = Bb. So f : Aa → Bb is an isomorphism, and
hence ⟨a, b⟩ ∈ f , a contradiction.

3.5 Von Neumann’s Construction of the Ordinals

sth:ordinals:vn:
sec

Theorem 3.12 gives rise to a thought. We could introduce certain objects, called
order types, to go proxy for the well-orderings. Writing ord(A,<) for the order
type of the well-ordering ⟨A,<⟩, we would hope to secure the following two
principles:

ord(A,<) = ord(B,⋖) iff ⟨A,<⟩ ∼= ⟨B,⋖⟩
ord(A,<) < ord(B,⋖) iff ⟨A,<⟩ ∼= ⟨Bb,⋖b⟩ for some b ∈ B

Moreover, we might hope to introduce order-types as certain sets, just as we
can introduce the natural numbers as certain sets.

The most common way to do this—and the approach we will follow—is to
define these order-types via certain canonical well-ordered sets. These canoni-
cal sets were first introduced by von Neumann:

Definition 3.13. The set A is transitive iff (∀x ∈ A)x ⊆ A. Then A is an
ordinal iff A is transitive and well-ordered by ∈.

In what follows, we will use Greek letters for ordinals. It follows immediately
from the definition that, if α is an ordinal, then ⟨α,∈α⟩ is a well-ordering,
where ∈α= {⟨x, y⟩ ∈ α2 : x ∈ y}. So, abusing notation a little, we can just say
that α itself is a well-ordering.

Here are our first few ordinals:

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .

You will note that these are the first few ordinals that we encountered in our
Axiom of Infinity, i.e., in von Neumann’s definition of ω (see section 2.6). This
is no coincidence. Von Neumann’s definition of the ordinals treats natural
numbers as ordinals, but allows for transfinite ordinals too.

As always, we can now ask: are these the ordinals? Or has von Neumann
simply given us some sets that we can treat as the ordinals? The kinds of
discussions one might have about this question are similar to the discussions
we had in ??, ??, ??, and section 2.8, so we will not belabour the point.
Instead, in what follows, we will simply use “the ordinals” to speak of “the von
Neumann ordinals”.
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3.6 Basic Properties of the Ordinals

sth:ordinals:basic:
sec

We observed that the first few ordinals are the natural numbers. The main
reason for developing a theory of ordinals is to extend the principle of induction
which holds on the natural numbers. We will build up to this via a sequence
of elementary results.

Lemma 3.14.sth:ordinals:basic:

ordmemberord

Every element of an ordinal is an ordinal.

Proof. Let α be an ordinal with b ∈ α. Since α is transitive, b ⊆ α. So ∈
well-orders b as ∈ well-orders α.

To see that b is transitive, suppose x ∈ c ∈ b. So c ∈ α as b ⊆ α. Again, as
α is transitive, c ⊆ α, so that x ∈ α. So x, c, b ∈ α. But ∈ well-orders α, so
that ∈ is a transitive relation on α by Proposition 3.2. So since x ∈ c ∈ b, we
have x ∈ b. Generalising, c ⊆ b

Corollary 3.15.sth:ordinals:basic:

ordissetofsmallerord

α = {β ∈ α : β is an ordinal}, for any ordinal α

Proof. Immediate from Lemma 3.14.

The rough gist of the next two main results, Theorem 3.16 and Theo-
rem 3.17, is that the ordinals themselves are well-ordered by membership:

Theorem 3.16 (Transfinite Induction).sth:ordinals:basic:

ordinductionschema

For any formula φ(x):

if ∃αφ(α), then ∃α(φ(α) ∧ (∀β ∈ α)¬φ(β))

where the displayed quantifiers are implicitly restricted to ordinals.

Proof. Suppose φ(α), for some ordinal α. If (∀β ∈ α)¬φ(β), then we are done.
Otherwise, as α is an ordinal, it has some ∈-least element which is φ, and this
is an ordinal by Lemma 3.14.

Note that we can equally express Theorem 3.16 as the scheme:

if ∀α((∀β ∈ α)φ(β)→ φ(α)), then ∀αφ(α)

just by taking ¬φ(α) in Theorem 3.16, and then performing elementary logical
manipulations.

Theorem 3.17 (Trichotomy).sth:ordinals:basic:

ordtrichotomy

α ∈ β ∨ α = β ∨ β ∈ α, for any ordinals α
and β.

Proof. The proof is by double induction, i.e., using Theorem 3.16 twice. Say
that x is comparable with y iff x ∈ y ∨ x = y ∨ y ∈ x.

For induction, suppose that every ordinal in α is comparable with every
ordinal. For further induction, suppose that α is comparable with every ordinal
in β. We will show that α is comparable with β. By induction on β, it will
follow that α is comparable with every ordinal; and so by induction on α, every
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ordinal is comparable with every ordinal, as required. It suffices to assume that
α /∈ β and β /∈ α, and show that α = β.

To show that α ⊆ β, fix γ ∈ α; this is an ordinal by Lemma 3.14. So by
the first induction hypothesis, γ is comparable with β. But if either γ = β or
β ∈ γ then β ∈ α (invoking the fact that α is transitive if necessary), contrary
to our assumption; so γ ∈ β. Generalising, α ⊆ β.

Exactly similar reasoning, using the second induction hypothesis, shows
that β ⊆ α. So α = β.

As such, we will sometimes write α < β rather than α ∈ β, since ∈ is behaving
as an ordering relation. There are no deep reasons for this, beyond familiarity,
and because it is easier to write α ≤ β than α ∈ β ∨ α = β.2

Here are two quick consequences of our last results, the first of which puts
our new notation into action:

Corollary 3.18. sth:ordinals:basic:

ordordered

If ∃αφ(α), then ∃α(φ(α) ∧ ∀β(φ(β)→ α ≤ β)). Moreover,
for any ordinals α, β, γ, both α /∈ α and α ∈ β ∈ γ→ α ∈ γ.

Proof. Just like Proposition 3.2.

Problem 3.3. Complete the “exactly similar reasoning” in the proof of The-
orem 3.17.

Corollary 3.19. sth:ordinals:basic:

corordtransitiveord

A is an ordinal iff A is a transitive set of ordinals.

Proof. Left-to-right. By Lemma 3.14. Right-to-left. If A is a transitive set of
ordinals, then ∈ well-orders A by Theorem 3.16 and Theorem 3.17.

Now, we glossed Theorem 3.16 and Theorem 3.17 as telling us that ∈ well-
orders the ordinals. However, we have to be very cautious about this sort of
claim, thanks to the following result:

Theorem 3.20 (Burali-Forti Paradox). sth:ordinals:basic:

buraliforti

There is no set of all the ordinals

Proof. For reductio, suppose O is the set of all ordinals. If α ∈ β ∈ O, then α
is an ordinal, by Lemma 3.14, so α ∈ O. So O is transitive, and hence O is an
ordinal by Corollary 3.19. Hence O ∈ O, contradicting Corollary 3.18.

This result is named after Burali-Forti. But, it was Cantor in 1899—in a letter
to Dedekind—who first saw clearly the contradiction in supposing that there
is a set of all the ordinals. As van Heijenoort explains:

Burali-Forti himself considered the contradiction as establishing, by
reductio ad absurdum, the result that the natural ordering of the
ordinals is just a partial ordering. (Heijenoort, 1967, p. 105)

2We could write α ∈ β; but that would be wholly non-standard.
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Setting Burali-Forti’s mistake to one side, we can summarize the foregoing as
follows. Ordinals are sets which are individually well-ordered by membership,
and collectively well-ordered by membership (without collectively constituting
a set).

Rounding this off, here are some more basic properties about the ordinals
which follow from Theorem 3.16 and Theorem 3.17.

Proposition 3.21. Any strictly descending sequence of ordinals is finite.

Proof. Any infinite strictly descending sequence of ordinals α0 > α1 > α2 > . . .
has no <-minimal member, contradicting Theorem 3.16.

Proposition 3.22.sth:ordinals:basic:

ordinalsaresubsets

α ⊆ β ∨ β ⊆ α, for any ordinals α, β.

Proof. If α ∈ β, then α ⊆ β as β is transitive. Similarly, if β ∈ α, then β ⊆ α.
And if α = β, then α ⊆ β and β ⊆ α. So by Theorem 3.17 we are done.

Proposition 3.23.sth:ordinals:basic:

ordisoidentity

α = β iff α ∼= β, for any ordinals α, β.

Proof. The ordinals are well-orders; so this is immediate from Trichotomy
(Theorem 3.17) and Lemma 3.9.

Problem 3.4.sth:ordinals:basic:

probunionordinalsordinal

Prove that, if every member of X is an ordinal, then
⋃
X is

an ordinal.

3.7 Replacement

sth:ordinals:replacement:
sec

In section 3.5, we motivated the introduction of ordinals by suggesting that
we could treat them as order-types, i.e., canonical proxies for well-orderings.
In order for that to work, we would need to prove that every well-ordering is
isomorphic to some ordinal. This would allow us to define ord(A,<) as the
ordinal α such that ⟨A,<⟩ ∼= α.

Unfortunately, we cannot prove the desired result only the Axioms we pro-
vided introduced so far. (We will see why in section 5.2, but for now the point
is: we can’t.) We need a new thought, and here it is:

Axiom (Scheme of Replacement). For any formula φ(x, y), the following
is an axiom:

for any A, if (∀x ∈ A)∃!y φ(x, y), then {y : (∃x ∈ A)φ(x, y)} exists.

As with Separation, this is a scheme: it yields infinitely many axioms, for each
of the infinitely many different φ’s. And it can equally well be (and normally
is) written down thus:
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For any formula φ(x, y) which does not contain “B”, the following is an
axiom:

∀A[(∀x ∈ A)∃!y φ(x, y)→∃B∀y(y ∈ B↔ (∃x ∈ A)φ(x, y))]

On first encounter, however, this is quite a tangled formula. The following
quick consequence of Replacement probably gives a clearer expression to the
intuitive idea we are working with:

Corollary 3.24. For any term τ(x), and any set A, this set exists:

{τ(x) : x ∈ A} = {y : (∃x ∈ A)y = τ(x)}.

Proof. Since τ is a term, ∀x∃!y τ(x) = y. A fortiori, (∀x ∈ A)∃!y τ(x) = y. So
{y : (∃x ∈ A)τ(x) = y} exists by Replacement.

This suggests that “Replacement” is a good name for the Axiom: given a set
A, you can form a new set, {τ(x) : x ∈ A}, by replacing every member of A
with its image under τ . Indeed, following the notation for the image of a set
under a function, we might write τ [A] for {τ(x) : x ∈ A}.

Crucially, however, τ is a term. It need not be (a name for) a function, in
the sense of ??, i.e., a certain set of ordered pairs. After all, if f is a function
(in that sense), then the set f [A] = {f(x) : x ∈ A} is just a particular subset of
ran(f), and that is already guaranteed to exist, just using the axioms of Z−.3

Replacement, by contrast, is a powerful addition to our axioms, as we will see
in chapter 5.

3.8 ZF−: a milestone

sth:ordinals:zfm:
sec

The question of how to justify Replacement (if at all) is not straightforward.
As such, we will reserve that for chapter 5. However, with the addition of
Replacement, we have reached another important milestone. We now have all
the axioms required for the theory ZF−. In detail:

Definition 3.25. The theory ZF− has these axioms: Extensionality, Union,
Pairs, Powersets, Infinity, and all instances of the Separation and Replacement
schemes. Otherwise put, ZF− adds Replacement to Z−.

This stands for Zermelo–Fraenkel set theory (minus something which we will
come to later). Fraenkel gets the honour, since he is credited with the formu-
lation of Replacement in 1922, although the first precise formulation was due
to Skolem (1922).

3Just consider {y ∈
⋃⋃

f : (∃x ∈ A)y = f(x)}.
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3.9 Ordinals as Order-Types

sth:ordinals:ordtype:
sec

Armed with Replacement, and so now working in ZF−, we can finally prove
the result we have been aiming for:

Theorem 3.26.sth:ordinals:ordtype:

thmOrdinalRepresentation

Every well-ordering is isomorphic to a unique ordinal.

Proof. Let ⟨A,<⟩ be a well-order. By Proposition 3.23, it is isomorphic to at
most one ordinal. So, for reductio, suppose ⟨A,<⟩ is not isomorphic to any
ordinal. We will first “make ⟨A,<⟩ as small as possible”. In detail: if some
proper initial segment ⟨Aa, <a⟩ is not isomorphic to any ordinal, there is a least
a ∈ A with that property; then let B = Aa and ⋖ = <a. Otherwise, let B = A
and ⋖ = <.

By definition, every proper initial segment of B is isomorphic to some or-
dinal, which is unique as above. So by Replacement, the following set exists,
and is a function:

f = {⟨β, b⟩ : b ∈ B and β ∼= ⟨Bb,⋖b⟩}

To complete the reductio, we’ll show that f is an isomorphism α → B, for
some ordinal α.

It is obvious that ran(f) = B. And by Lemma 3.11, f preserves ordering,
i.e., γ ∈ β iff f(γ)⋖f(β). To show that dom(f) is an ordinal, by Corollary 3.19
it suffices to show that dom(f) is transitive. So fix β ∈ dom(f), i.e., β ∼=
⟨Bb,⋖b⟩ for some b. If γ ∈ β, then γ ∈ dom(f) by Lemma 3.10; generalising,
β ⊆ dom(f).

This result licenses the following definition, which we have wanted to offer
since section 3.5:

Definition 3.27. If ⟨A,<⟩ is a well-ordering, then its order type, ord(A,<),
is the unique ordinal α such that ⟨A,<⟩ ∼= α.

Moreover, this definition licenses two nice principles:

Corollary 3.28.sth:ordinals:ordtype:

ordtypesworklikeyouwant

Where ⟨A,<⟩ and ⟨B,⋖⟩ are well-orderings:

ord(A,<) = ord(B,⋖) iff ⟨A,<⟩ ∼= ⟨B,⋖⟩
ord(A,<) ∈ ord(B,⋖) iff ⟨A,<⟩ ∼= ⟨Bb,⋖b⟩ for some b ∈ B

Proof. The identity holds by Proposition 3.23. To prove the second claim, let
ord(A,<) = α and ord(B,⋖) = β, and let f : β → ⟨B,⋖⟩ be our isomorphism.
Then:

α ∈ β iff f↾α : α→ Bf(α) is an isomorphism

iff ⟨A,<⟩ ∼= ⟨Bf(α),⋖f(α)⟩
iff ⟨A,<⟩ ∼= ⟨Bb,⋖b⟩ for some b ∈ B

by Proposition 3.7, Lemma 3.10, and Corollary 3.15.
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3.10 Successor and Limit Ordinals

sth:ordinals:opps:
sec

In the next few chapters, we will use ordinals a great deal. So it will help if we
introduce some simple notions.

Definition 3.29. For any ordinal α, its successor is α+ = α ∪ {α}. We say
that α is a successor ordinal if β+ = α for some ordinal β. We say that α is a
limit ordinal iff α is neither empty nor a successor ordinal.

The following result shows that this is the right notion of successor :

Proposition 3.30. For any ordinal α:

1. α ∈ α+;

2. α+ is an ordinal;

3. there is no ordinal β such that α ∈ β ∈ α+.

Proof. Trivially, α ∈ α ∪ {α} = α+. Equally, α+ is a transitive set of ordinals,
and hence an ordinal by Corollary 3.19. And it is impossible that α ∈ β ∈ α+,
since then either β ∈ α or β = α, contradicting Corollary 3.18.

This also licenses a variant of proof by transfinite induction:

Theorem 3.31 (Simple Transfinite Induction). sth:ordinals:opps:

simpletransrecursion

Let φ(x) be a formula
such that:

1. φ(∅); and

2. for any ordinal α, if φ(α) then φ(α+); and

3. if α is a limit ordinal and (∀β ∈ α)φ(β), then φ(α).

Then ∀αφ(α).

Proof. We prove the contrapositive. So, suppose there is some ordinal which
is ¬φ; let γ be the least such ordinal. Then either γ = ∅, or γ = α+ for some
α such that φ(α); or γ is a limit ordinal and (∀β ∈ γ)φ(β).

A final bit of notation will prove helpful later on:

Definition 3.32. sth:ordinals:opps:

defsupstrict

If X is a set of ordinals, then lsub(X) =
⋃

α∈X α+.

Here, “lsub” stands for “least strict upper bound”.4 The following result ex-
plains this:

4Some books use “sup(X)” for this. But other books use “sup(X)” for the least non-
strict upper bound, i.e., simply

⋃
X. If X has a greatest element, α, these notions come

apart: the least strict upper bound is α+, whereas the least non-strict upper bound is just
α.
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Proposition 3.33. If X is a set of ordinals, lsub(X) is the least ordinal
greater than every ordinal in X.

Proof. Let Y = {α+ : α ∈ X}, so that lsub(X) =
⋃
Y . Since ordinals are

transitive and every member of an ordinal is an ordinal, lsub(X) is a transitive
set of ordinals, and so is an ordinal by Corollary 3.19.

If α ∈ X, then α+ ∈ Y , so α+ ⊆
⋃
Y = lsub(X), and hence α ∈ lsub(X).

So lsub(X) is strictly greater than every ordinal in X.
Conversely, if α ∈ lsub(X), then α ∈ β+ ∈ Y for some β ∈ X, so that

α ≤ β ∈ X. So lsub(X) is the least strict upper bound on X.
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Chapter 4

Stages and Ranks

4.1 Defining the Stages as the Vαs

sth:spine:valpha:
sec

In chapter 3, we defined well-orderings and the (von Neumann) ordinals. In
this chapter, we will use these to characterise the hierarchy of sets itself. To
do this, recall that in section 3.10, we defined the idea of successor and limit
ordinals. We use these ideas in following definition:

Definition 4.1. sth:spine:valpha:

defValphas

V∅ = ∅
Vα+ = ℘(Vα) for any ordinal α

Vα =
⋃
γ<α

Vγ when α is a limit ordinal

This will be a definition by transfinite recursion on the ordinals. In this regard,
we should compare this with recursive definitions of functions on the natural
numbers.1 As when dealing with natural numbers, one defines a base case and
successor cases; but when dealing with ordinals, we also need to describe the
behaviour of limit cases.

This definition of the Vαs will be an important milestone. We have infor-
mally motivated our hierarchy of sets as forming sets by stages. The Vαs are,
in effect, just those stages. Importantly, though, this is an internal character-
isation of the stages. Rather than suggesting a possible model of the theory,
we will have defined the stages within our set theory.

4.2 The Transfinite Recursion Theorem(s)

sth:spine:recursion:
sec

The first thing we must do, though, is confirm that Definition 4.1 is a suc-
cessful definition. More generally, we need to prove that any attempt to offer

1Cf. the definitions of addition, multiplication, and exponentiation in ??.
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a transfinite by (transfinite) recursion will succeed. That is the aim of this
section.

Warning: this is tricky material. The overarching moral, though, is quite
simple: Transfinite Induction plus Replacement guarantee the legitimacy of
(several versions of) transfinite recursion.2

Definition 4.2. Let τ(x) be a term; let f be a function; let α be an ordinal.
We say that f is an α-approximation for τ iff both dom(f) = α and (∀β ∈
α)f(β) = τ(f↾β).

Lemma 4.3 (Bounded Recursion).sth:spine:recursion:

transrecursionfun

For any term τ(x) and any ordinal α,
there is a unique α-approximation for τ .

Proof. We will show that, for any γ ≤ α, there is a unique γ-approximation.
We first establish uniqueness. Let g and h (respectively) be γ- and δ-

approximations. A transfinite induction on their arguments shows that g(β) =
h(β) for any β ∈ dom(g)∩dom(h) = γ ∩ δ = min(γ, δ). So our approximations
are unique (if they exist), and agree on all values.

To establish existence, we now use a simple transfinite induction (Theo-
rem 3.31) on ordinals δ ≤ α.

The empty function is trivially an ∅-approximation.
If g is a γ-approximation, then g ∪ {⟨γ+, τ(g)⟩} is a γ+-approximation.
If γ is a limit ordinal and gδ is a δ-approximation for all δ < γ, let g =⋃

δ∈γ gδ. This is a function, since our various gδs agree on all values. And if
δ ∈ γ then g(δ) = gδ+(δ) = τ(gδ+↾δ) = τ(g↾δ).

This completes the proof by transfinite induction.

If we allow ourselves to define a term rather than a function, then we can
remove the bound α from the previous result. In the statement and proof of
the following result, when σ is a term, we let σ↾α = {⟨β, σ(β)⟩ : β ∈ α}.

Theorem 4.4 (General Recursion).sth:spine:recursion:

transrecursionschema

For any term τ(x), we can explicitly
define a term σ(x), such that σ(α) = τ(σ↾α) for any ordinal α.

Proof. For each α, by Lemma 4.3 there is a unique α-approximation, fα, for
τ . Define σ(α) as fα+(α). Now:

σ(α) = fα+(α)

= τ(fα+↾α)

= τ({⟨β, fα+(β)⟩ : β ∈ α})
= τ({⟨β, fα(β)⟩ : β ∈ α})
= τ(σ↾α)

noting that fα(β) = fα+(β) for all β < α, as in Lemma 4.3.

2A reminder: all formulas and terms can have parameters (unless explicitly stated oth-
erwise).
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Note that Theorem 4.4 is a schema. Crucially, we cannot expect σ to define a
function, i.e., a certain kind of set, since then dom(σ) would be the set of all
ordinals, contradicting the Burali-Forti Paradox (Theorem 3.20).

It still remains to show, though, that Theorem 4.4 vindicates our definition
of the Vαs. This may not be immediately obvious; but it will become apparent
with a last, simple, version of transfinite recursion.

Theorem 4.5 (Simple Recursion). sth:spine:recursion:

simplerecursionschema

For any terms τ(x) and θ(x) and any
set A, we can explicitly define a term σ(x) such that:

σ(∅) = A

σ(α+) = τ(σ(α)) for any ordinal α

σ(α) = θ(ran(σ↾α)) when α is a limit ordinal

Proof. We start by defining a term, ξ(x), as follows:

ξ(x) =


A if x is not a function whose

domain is an ordinal; otherwise:

τ(x(α)) if dom(x) = α+

θ(ran(x)) if dom(x) is a limit ordinal

By Theorem 4.4, there is a term σ(x) such that σ(α) = ξ(σ↾α) for every ordinal
α; moreover, σ↾α is a function with domain α. We show that σ has the required
properties, by simple transfinite induction (Theorem 3.31).

First, σ(∅) = ξ(∅) = A.
Next, σ(α+) = ξ(σ↾α+) = τ(σ↾α+(α)) = τ(σ(α)).
Last, σ(α) = ξ(σ↾α) = θ(ran(σ↾α)), when α is a limit.

Now, to vindicate Definition 4.1, just take A = ∅ and τ(x) = ℘(x) and θ(x) =⋃
x. At long last, this vindicates the definition of the Vαs!

4.3 Basic Properties of Stages

sth:spine:Valphabasic:
sec

To bring out the foundational importance of the definition of the Vαs, we will
present a few basic results about them. We start with a definition:3

Definition 4.6. The set A is potent iff ∀x((∃y ∈ A)x ⊆ y→ x ∈ A).

Lemma 4.7. sth:spine:Valphabasic:

Valphabasicprops

For each ordinal α:

1. sth:spine:Valphabasic:

Valphatrans

Each Vα is transitive.

2. sth:spine:Valphabasic:

Valphapotent

Each Vα is potent.

3. sth:spine:Valphabasic:

Valphacum

If γ ∈ α, then Vγ ∈ Vα (and hence also Vγ ⊆ Vα by (1))

3There’s no standard terminology for “potent”; this is the name used by Button (forth-
coming).
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Proof. We prove this by a (simultaneous) transfinite induction. For induction,
suppose that (1)–(3) holds for each ordinal β < α.

The case of α = ∅ is trivial.
Suppose α = β+. To show (3), if γ ∈ α then Vγ ⊆ Vβ by hypothesis, so

Vγ ∈ ℘(Vβ) = Vα. To show (2), suppose A ⊆ B ∈ Vα i.e., A ⊆ B ⊆ Vβ ; then
A ⊆ Vβ so A ∈ Vα. To show (1), note that if x ∈ A ∈ Vα we have A ⊆ Vβ , so
x ∈ Vβ , so x ⊆ Vβ as Vβ is transitive by hypothesis, and so x ∈ Vα.

Suppose α is a limit ordinal. To show (3), if γ ∈ α then γ ∈ γ+ ∈ α, so
that Vγ ∈ Vγ+ by assumption, hence Vγ ∈

⋃
β∈α Vβ = Vα. To show (1) and (2),

just observe that a union of transitive (respectively, potent) sets is transitive
(respectively, potent).

Lemma 4.8.sth:spine:Valphabasic:

Valphanotref

For each ordinal α, Vα /∈ Vα.

Proof. By transfinite induction. Evidently V∅ /∈ V∅.
If Vα+ ∈ Vα+ = ℘(Vα), then Vα+ ⊆ Vα; and since Vα ∈ Vα+ by Lemma 4.7,

we have Vα ∈ Vα. Conversely: if Vα /∈ Vα then Vα+ /∈ Vα+

If α is a limit and Vα ∈ Vα =
⋃

β∈α Vβ , then Vα ∈ Vβ for some β ∈ α;
but then also Vβ ∈ Vα so that Vβ ∈ Vβ by Lemma 4.7 (twice). Conversely, if
Vβ /∈ Vβ for all β ∈ α, then Vα /∈ Vα.

Corollary 4.9. For any ordinals α, β: α ∈ β iff Vα ∈ Vβ

Proof. Lemma 4.7 gives one direction. Conversely, suppose Vα ∈ Vβ . Then
α ̸= β by Lemma 4.8; and β /∈ α, for otherwise we would have Vβ ∈ Vα and
hence Vβ ∈ Vβ by Lemma 4.7 (twice), contradicting Lemma 4.8. So α ∈ β by
Trichotomy.

All of this allows us to think of each Vα as the αth stage of the hierarchy. Here
is why.

Certainly our Vαs can be thought of as being formed in an iterative process,
for our use of ordinals tracks the notion of iteration. Moreover, if one stage
is formed before the other, i.e., Vβ ∈ Vα, i.e., β ∈ α, then our process of
formation is cumulative, since Vβ ⊆ Vα. Finally, we are indeed forming all
possible collections of sets that were available at any earlier stage, since any
successor stage Vα+ is the power-set of its predecessor Vα.

In short: with ZF−, we are almost done, in articulating our vision of the
cumulative-iterative hierarchy of sets. (Though, of course, we still need to
justify Replacement.)

4.4 Foundation

sth:spine:foundation:
sec

We are only almost done—and not quite finished—because nothing in ZF−

guarantees that every set is in some Vα, i.e., that every set is formed at some
stage.
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Now, there is a fairly straightforward (mathematical) sense in which we
don’t care whether there are sets outside the hierarchy. (If there are any
there, we can simply ignore them.) But we have motivated our concept of set
with the thought that every set is formed at some stage (see Stages-are-key
in section 2.1). So we will want to preclude the possibility of sets which fall
outside of the hierarchy. Accordingly, we must add a new axiom, which ensures
that every set occurs somewhere in the hierarchy.

Since the Vαs are our stages, we might simply consider adding the following
as an axiom:

Regularity. ∀A∃αA ⊆ Vα

This would be a perfectly reasonable approach. However, for reasons that
will be explained in the next section, we will instead adopt an alternative axiom:

Axiom (Foundation). (∀A ̸= ∅)(∃B ∈ A)A ∩B = ∅.

With some effort, we can show (in ZF−) that Foundation entails Regularity:

Definition 4.10. For each set A, let:

cl0(A) = A,

cln+1(A) =
⋃

cln(A),

trcl(A) =
⋃
n<ω

cln(A).

We call trcl(A) the transitive closure of A.

The name “transitive closure” is apt:

Proposition 4.11. sth:spine:foundation:

subsetoftrcl

A ⊆ trcl(A) and trcl(A) is a transitive set.

Proof. Evidently A = cl0(A) ⊆ trcl(A). And if x ∈ b ∈ trcl(A), then b ∈ cln(A)
for some n, so x ∈ cln+1(A) ⊆ trcl(A).

Lemma 4.12. sth:spine:foundation:

lem:TransitiveWellFounded

If A is a transitive set, then there is some α such that A ⊆ Vα.

Proof. Recalling the definition of “lsub(X)” from Definition 3.32, define two
sets:

D = {x ∈ A : ∀δ x ⊈ Vδ}
α = lsub{δ : (∃x ∈ A)(x ⊆ Vδ ∧ (∀γ ∈ δ)x ⊈ Vγ)}

Suppose D = ∅. So if x ∈ A, then there is some δ such that x ⊆ Vδ and, by
the well-ordering of the ordinals, (∀γ ∈ δ)x ⊈ Vγ ; hence δ ∈ α and so x ∈ Vα
by Lemma 4.7. Hence A ⊆ Vα, as required.
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So it suffices to show that D = ∅. For reductio, suppose otherwise. By
Foundation, there is some B ∈ D ⊆ A such that D ∩ B = ∅. If x ∈ B then
x ∈ A, since A is transitive, and since x /∈ D, it follows that ∃δ x ⊆ Vδ. So
now let

β = lsub{δ : (∃x ∈ b)(x ⊆ Vδ ∧ (∀γ < δ)x ⊈ Vγ)}.

As before, B ⊆ Vβ , contradicting the claim that B ∈ D.

Theorem 4.13.sth:spine:foundation:

zfentailsregularity

Regularity holds.

Proof. Fix A; now A ⊆ trcl(A) by Proposition 4.11, which is transitive. So
there is some α such that A ⊆ trcl(A) ⊆ Vα by Lemma 4.12

These results show that ZF− proves the conditional Foundation ⇒ Regularity.
In Proposition 4.22, we will show that ZF− proves Regularity ⇒ Foundation.
As such, Foundation and Regularity are equivalent (modulo ZF−). But this
means that, given ZF−, we can justify Foundation by noting that it is equiva-
lent to Regularity. And we can justify Regularity immediately on the basis of
Stages-are-key .

4.5 Z and ZF: A Milestone

sth:spine:zf:
sec

With Foundation, we reach another important milestone. We have considered
theories Z− and ZF−, which we said were certain theories “minus” a certain
something. That certain something is Foundation. So:

Definition 4.14. The theory Z adds Foundation to Z−. So its axioms are
Extensionality, Union, Pairs, Powersets, Infinity, Foundation, and all instances
of the Separation scheme.

The theory ZF adds Foundation to ZF−. Otherwise put, ZF adds all
instances of Replacement to Z.

Still, one question might have occurred to you. If Regularity is equivalent
over ZF− to Foundation, and Regularity’s justification is clear, why bother to
go around the houses, and take Foundation as our basic axiom, rather than
Regularity?

Setting aside historical reasons (to do with who formulated what and when),
the basic reason is that Foundation can be presented without employing the
definition of the Vαs. That definition relied upon all of the work of section 4.2:
we needed to prove Transfinite Recursion, to show that it was justified. But our
proof of Transfinite Recursion employed Replacement. So, whilst Foundation
and Regularity are equivalent modulo ZF−, they are not equivalent modulo
Z−.

Indeed, the matter is more drastic than this simple remark suggests. Though
it goes well beyond this book’s remit, it turns out that both Z− and Z are too
weak to define the Vαs. So, if you are working only in Z, then Regularity (as we
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have formulated it) does not even make sense. This is why our official axiom
is Foundation, rather than Regularity.

From now on, we will work in ZF (unless otherwise stated), without any
further comment.

4.6 Rank

sth:spine:rank:
sec

Now that we have defined the stages as the Vα’s, and we know that every set
is a subset of some stage, we can define the rank of a set. Intuitively, the rank
of A is the first moment at which A is formed. More precisely:

Definition 4.15. sth:spine:rank:

defnsetrank

For each set A, rank(A) is the least ordinal α such that
A ⊆ Vα.

Proposition 4.16. sth:spine:rank:

ranksexist

rank(A) exists, for any A.

Proof. Left as an exercise.

Problem 4.1. Prove Proposition 4.16.

The well-ordering of ranks allows us to prove some important results:

Proposition 4.17. sth:spine:rank:

valphalowerrank

For any ordinal α, Vα = {x : rank(x) ∈ α}.

Proof. If rank(x) ∈ α then x ⊆ Vrank(x) ∈ Vα, so x ∈ Vα as Vα is potent
(invoking Lemma 4.7 multiple times). Conversely, if x ∈ Vα then x ⊆ Vα, so
rank(x) ≤ α; now a simple transfinite induction shows that x /∈ Vα.

Problem 4.2. Complete the simple transfinite induction mentioned in Propo-
sition 4.17.

Proposition 4.18. sth:spine:rank:

rankmemberslower

If B ∈ A, then rank(B) ∈ rank(A).

Proof. A ⊆ Vrank(A) = {x : rank(x) ∈ rank(A)} by Proposition 4.17.

Using this fact, we can establish a result which allows us to prove things about
all sets by a form of induction:

Theorem 4.19 (∈-Induction Scheme). For any formula φ:

∀A((∀x ∈ A)φ(x)→ φ(A))→∀Aφ(A).

Proof. We will prove the contrapositive. So, suppose ¬∀Aφ(A). By Transfinite
Induction (Theorem 3.16), there is some non-φ of least possible rank; i.e. some
A such that ¬φ(A) and ∀x(rank(x) ∈ rank(A) → φ(x)). Now if x ∈ A then
rank(x) ∈ rank(A), by Proposition 4.18, so that φ(x); i.e. (∀x ∈ A)φ(x) ∧
¬φ(A).
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Here is an informal way to gloss this powerful result. Say that φ is hereditary
iff whenever every element of a set is φ, the set itself is φ. Then ∈-Induction
tells you the following: if φ is hereditary, every set is φ.

To wrap up the discussion of ranks (for now), we’ll prove a few claims which
we have foreshadowed a few times.

Proposition 4.20.sth:spine:rank:

ranksupstrict

rank(A) = lsubx∈A rank(x).

Proof. Let α = lsubx∈A rank(x). By Proposition 4.18, α ≤ rank(A). But if
x ∈ A then rank(x) ∈ α, so that x ∈ Vα by Proposition 4.17, and hence A ⊆ Vα,
i.e., rank(A) ≤ α. Hence rank(A) = α.

Corollary 4.21.sth:spine:rank:

ordsetrankalpha

For any ordinal α, rank(α) = α.

Proof. Suppose for transfinite induction that rank(β) = β for all β ∈ α. Now
rank(α) = lsubβ∈α rank(β) = lsubβ∈α β = α by Proposition 4.20.

Finally, here is a quick proof of the result promised at the end of section 4.4,
that ZF− proves the conditional Regularity ⇒ Foundation. (Note that the
notion of “rank” and Proposition 4.18 are available for use in this proof since—
as mentioned at the start of this section—they can be presented using ZF− +
Regularity.)

Proposition 4.22 (working in ZF− +Regularity).sth:spine:rank:

zfminusregularityfoundation

Foundation holds.

Proof. Fix A ̸= ∅, and some B ∈ A of least possible rank. If c ∈ B then
rank(c) ∈ rank(B) by Proposition 4.18, so that c /∈ A by choice of B.
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Chapter 5

Replacement

5.1 Introduction

sth:replacement:intro:
sec

Replacement is the axiom scheme which makes the difference between ZF
and Z. We helped ourselves to it throughout chapters 3 to 4. In this chapter,
we will finally consider the question: is Replacement justified?

To make the question sharp, it is worth observing that Replacement is really
rather strong. We will get a sense of just how strong it is, during this chapter
(and again in section 8.5). But this will suggest that justification really is
required.

We will discuss two kinds of justification. Roughly: an extrinsic justification
is an attempt to justify an axiom by its fruits; an intrinsic justification is
an attempt to justify an axiom by suggesting that it is vindicated by the
mathematical concepts in question. We will get a greater sense of what this
means during this chapter, but it is just the tip of an iceberg. For more, see in
particular Maddy (1988a and 1988b).

5.2 The Strength of Replacement

sth:replacement:strength:
sec

We begin with a simple observation about the strength of Replacement: unless
we go beyond Z, we cannot prove the existence of any von Neumann ordinal
greater than or equal to ω + ω.

Here is a sketch of why. Working in ZF, consider the set Vω+ω. This set
acts as the domain for a model for Z. To see this, we introduce some notation
for the relativization of a formula:

Definition 5.1. sth:replacement:strength:

formularelativization

For any set M , and any formula φ, let φM be the formula
which results by restricting all of φ’s quantifiers to M . That is, replace “∃x”
with “(∃x ∈M)”, and replace “∀x” with “(∀x ∈M)”.

It can be shown that, for every axiom φ of Z, we have that ZF ⊢ φVω+ω .
But ω + ω is not in Vω+ω, by Corollary 4.21. So Z is consistent with the
non-existence of ω + ω.
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This is why we said, in section 3.7, that Theorem 3.26 cannot be proved
without Replacement. For it is easy, within Z, to define an explicit well-
ordering which intuitively should have order-type ω + ω. Indeed, we gave an
informal example of this in section 3.2, when we presented the ordering on the
natural numbers given by:

n⋖m iff either n < m and m− n is even,

or n is even and m is odd.

But if ω+ω does not exist, this well-ordering is not isomorphic to any ordinal.
So Z does not prove Theorem 3.26.

Flipping things around: Replacement allows us to prove the existence of
ω + ω, and hence must allow us to prove the existence of Vω+ω. And not just
that. For any well-ordering we can define, Theorem 3.26 tells us that there
is some α isomorphic with that well-ordering, and hence that Vα exists. In a
straightforward way, then, Replacement guarantees that the hierarchy of sets
must be very tall.

Over the next few sections, and then again in section 8.5, we’ll get a better
sense of better just how tall Replacement forces the hierarchy to be. The simple
point, for now, is that Replacement really does stand in need of justification!

5.3 Extrinsic Considerations about Replacement

sth:replacement:extrinsic:
sec

We start by considering an extrinsic attempt to justify Replacement. Boolos
suggests one, as follows.

[. . . ] the reason for adopting the axioms of replacement is quite
simple: they have many desirable consequences and (apparently)
no undesirable ones. In addition to theorems about the iterative
conception, the consequences include a satisfactory if not ideal the-
ory of infinite numbers, and a highly desirable result that justifies
inductive definitions on well-founded relations. (Boolos, 1971, 229)

The gist of Boolos’s idea is that we should justify Replacement by its fruits.
And the specific fruits he mentions are the things we have discussed in the
past few chapters. Replacement allowed us to prove that the von Neumann
ordinals were excellent surrogates for the idea of a well-ordering type (this
is our “satisfactory if not ideal theory of infinite numbers”). Replacement
also allowed us to define the Vαs, establish the notion of rank, and prove ∈-
Induction (this amounts to our “theorems about the iterative conception”).
Finally, Replacement allows us to prove the Transfinite Recursion Theorem
(this is the “inductive definitions on well-founded relations”).

These are, indeed, desirable consequences. But do these desirable conse-
quences suffice to justify Replacement? No. Or at least, not straightforwardly.

Here is a simple problem. Whilst we have stated some desirable conse-
quences of Replacement, we could have obtained many of them via other means.
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This is not as well known as it ought to be, though, so we should pause to ex-
plain the situation.

There is a simple theory of sets, Level Theory, or LT for short.1 LT’s axioms
are just Extensionality, Separation, and the claim that every set is a subset of
some level, where “level” is cunningly defined so that the levels behave like our
friends, the Vαs. So ZF proves LT; but LT is much weaker than ZF. In fact,
LT does not give you Pairs, Powersets, Infinity, or Replacement. Let Zr be
the result of adding Infinity and Powersets to LT; this delivers Pairs too, so,
Zr is at least as strong as Z. But, in fact, Zr is strictly stronger than Z, since
it adds the claim that every set has a rank (hence my suggestion that we call
it Zr). Indeed, Zr delivers: a perfectly satisfactory theory of ordinals; results
which stratify the hierarchy into well-ordered stages; a proof of ∈-Induction;
and a version of Transfinite Recursion.

In short: although Boolos didn’t know this, all of the desirable consequences
which he mentions could have been arrived at without Replacement; he simply
needed to use Zr rather than Z.

(Given all of this, why did we follow the conventional route, of teaching
you ZF, rather than LT and Zr? There are two reasons. First: for purely
historical reasons, starting with LT is rather nonstandard; we wanted to equip
you to be able to read more standard discussions of set theory. Second: when
you are ready to appreciate LT and Zr, you can simply read Potter 2004 and
Button forthcoming.)

Of course, since Zr is strictly weaker than ZF, there are results which
ZF proves which Zr leaves open. So one could try to justify Replacement on
extrinsic grounds by pointing to one of these results. But, once you know how
to use Zr, it is quite hard to find many examples of things that are (a) settled
by Replacement but not otherwise, and (b) are intuitively true. (For more on
this, see Potter 2004, §13.2.)

The bottom line is this. To provide a compelling extrinsic justification for
Replacement, one would need to find a result which cannot be achieved without
Replacement. And that’s not an easy enterprise.

Let’s consider a further problem which arises for any attempt to offer a
purely extrinsic justification for Replacement. (This problem is perhaps more
fundamental than the first.) Boolos does not just point out that Replace-
ment has many desirable consequences. He also states that Replacement has
“(apparently) no undesirable” consequences. But this parenthetical caveat,
“apparently,” is surely absolutely crucial.

Recall how we ended up here: Näıve Comprehension ran into inconsistency,
and we responded to this inconsistency by embracing the cumulative-iterative
conception of set. This conception comes equipped with a story which, we hope,
assures us of its consistency. But if we cannot justify Replacement from within
that story, then we have (as yet) no reason to believe that ZF is consistent.

1The first versions of LT are offered by Montague (1965) and Scott (1974); this was
simplified, and given a book-length treatment, by Potter (2004); and Button (forthcoming)
has recently simplified LT further.
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Or rather: we have no reason to believe that ZF is consistent, apart from the
(perhaps merely contingent) fact that no one has discovered a contradiction
yet. In exactly that sense, Boolos’s comment seems to come down to this:
“(apparently) ZF is consistent”. We should demand greater reassurance of
consistency than this.

This issue will affect any purely extrinsic attempt to justify Replacement,
i.e., any justification which is couched solely in terms of the (known) conse-
quences of ZF. As such, we will want to look for an intrinsic justification of
Replacement, i.e., a justification which suggests that the story which we told
about sets somehow “already” commits us to Replacement.

5.4 Limitation-of-size

sth:replacement:limofsize:
sec

Perhaps the most common attempt to offer an “intrinsic” justification of Re-
placement comes via the following notion:

Limitation-of-size. Any things form a set, provided that there are not
too many of them.

This principle will immediately vindicate Replacement. After all, any set
formed by Replacement cannot be any larger than any set from which it was
formed. Stated precisely: suppose you form a set τ [A] = {τ(x) : x ∈ A} using
Replacement; then τ [A] ⪯ A; so if the elements of A were not too numerous to
form a set, their images are not too numerous to form τ [A].

The obvious difficulty with invoking Limitation-of-size to justify Replace-
ment is that we have not yet laid down any principle like Limitation-of-size.
Moreover, when we told our story about the cumulative-iterative conception of
set in chapters 1 to 2, nothing ever hinted in the direction of Limitation-of-size.
This, indeed, is precisely why Boolos at one point wrote: “Perhaps one may
conclude that there are at least two thoughts ‘behind’ set theory” (1989, p. 19).
On the one hand, the ideas surrounding the cumulative-iterative conception of
set are meant to vindicate Z. On the other hand, Limitation-of-size is meant
to vindicate Replacement.

But the issue it is not just that we have thus far been silent about Limitation-
of-size. Rather, the issue is that Limitation-of-size (as just formulated) seems
to sit quite badly with the cumulative-iterative notion of set. After all, it
mentions nothing about the idea of sets as formed in stages.

This is really not much of a surprise, given the history of these “two
thoughts” (i.e., the cumulative-iterative conception of set, and Limitation-of-
size). These “two thoughts” ultimately amount to two rather different projects
for blocking the set-theoretic paradoxes. The cumulative-iterative notion of set
blocks Russell’s paradox by saying, roughly: we should never have expected a
Russell set to exist, because it would not be “formed” at any stage. By contrast,
Limitation-of-size is meant to rule out the Russell set, by saying, roughly: we
should never have expected a Russell set to exist, because it would have been
too big.
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Put like this, then, let’s be blunt: considered as a reply to the paradoxes,
Limitation-of-size stands in need of much more justification. Consider, for
example, this version of Russell’s Paradox: no pug sniffs exactly the pugs which
don’t sniff themselves (see section 1.2). If you ask “why is there no such pug?”,
it is not a good answer to be told that such a pug would have to sniff too many
pugs. So why would it be a good intuitive explanation, of the non-existence of
a Russell set, that it would have to be “too big” to exist?

In short, it’s forgivable if you are a bit mystified concerning the “intuitive”
motivation for Limitation-of-size.

5.5 Replacement and “Absolute Infinity”

sth:replacement:absinf:
sec

We will now put Limitation-of-size behind us, and explore a different family
of (intrinsic) attempts to justify Replacement, which do take seriously the idea
of the sets as formed in stages.

When we first outlined the iterative process, we offered some principles
which explained what happens at each stage. These were Stages-are-key,
Stages-are-ordered, and Stages-accumulate. Later, we added some principles
which told us something about the number of stages: Stages-keep-going told
us that the process of set-formation never ends, and Stages-hit-infinity told us
that the process goes through an infinite-th stage.

It is reasonable to suggest that these two latter principles fall out of some
a broader principle, like:

Stages-are-inexhaustible. There are absolutely infinitely many stages; the
hierarchy is as tall as it could possibly be.

Obviously this is an informal principle. But even if it is not immediately
entailed by the cumulative-iterative conception of set, it certainly seems con-
sonant with it. At the very least, and unlike Limitation-of-size, it retains the
idea that sets are formed stage-by-stage.

The hope, now, is to leverage Stages-are-inexhaustible into a justification
of Replacement. So let us see how this might be done.

In section 3.2, we saw that it is easy to construct a well-ordering which
(morally) should be isomorphic to ω+ω. Otherwise put, we can easily imagine
a stage-by-stage iterative process, whose order-type (morally) is ω+ω. As such,
if we have accepted Stages-are-inexhaustible, then we should surely accept that
there is at least an ω+ω-th stage of the hierarchy, i.e., Vω+ω, for the hierarchy
surely could continue thus far.

This thought generalizes as follows: for any well-ordering, the process of
building the iterative hierarchy should run at least as far as that well-ordering.
And we could guarantee this, just by treating Theorem 3.26 as an axiom. This
would tell us that any well-ordering is isomorphic to a von Neumann ordinal.
Since each von Neumann ordinal will be equal to its own rank, Theorem 3.26
will then tell us that, whenever we can describe a well-ordering in our set
theory, the iterative process of set building must outrun that well-ordering.
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This idea certainly seems like a corollary of Stages-are-inexhaustible. Un-
fortunately, if our aim is to extract Replacement from this idea, then we face a
simple, technical, barrier: Replacement is strictly stronger than Theorem 3.26.
(This observation is made by Potter (2004, §13.2); we will prove it in sec-
tion 5.8.)

The upshot is that, if we are going to understand Stages-are-inexhaustible
in such a way as to yield Replacement, then it cannot merely say that the hier-
archy outruns any well-ordering. It must make a stronger claim than that. To
this end, Shoenfield (1977) proposed a very natural strengthening of the idea,
as follows: the hierarchy is not cofinal with any set.2 In slightly more detail:
if τ is a mapping which sends sets to stages of the hierarchy, the image of any
set A under τ does not exhaust the hierarchy. Otherwise put (schematically):

Stages-are-super-cofinal. If A is a set and τ(x) is a stage for every x ∈ A,
then there is a stage which comes after each τ(x) for x ∈ A.

It is obvious that ZF proves a suitably formalised version of Stages-are-super-
cofinal. Conversely, we can informally argue that Stages-are-super-cofinal jus-
tifies Replacement.3 For suppose (∀x ∈ A)∃!y φ(x, y). Then for each x ∈ A,
let σ(x) be the y such that φ(x, y), and let τ(x) be the stage at which σ(x)
is first formed. By Stages-are-super-cofinal, there is a stage V such that
(∀x ∈ A)τ(x) ∈ V . Now since each τ(x) ∈ V and σ(x) ⊆ τ(x), by Sepa-
ration we can obtain {y ∈ V : (∃x ∈ A)σ(x) = y} = {y : (∃x ∈ A)φ(x, y)}.

Problem 5.1. Formalize Stages-are-super-cofinal within ZF.

So Stages-are-super-cofinal vindicates Replacement. And it is at least plau-
sible that Stages-are-inexhaustible vindicates Stages-are-super-cofinal. For sup-
pose Stages-are-super-cofinal fails. So the hierarchy is cofinal with some set A,
i.e., we have a map τ such that for any stage S there is some x ∈ A such that
S ∈ τ(x). In that case, we do have a way to get a handle on the supposed “ab-
solute infinity” of the hierarchy: it is exhausted by the range of τ applied to A.
And that compromises the thought that the hierarchy is “absolutely infinite”.
Contraposing: Stages-are-inexhaustible entails Stages-are-super-cofinal, which
in turn justifies Replacement.

This represents a genuinely promising attempt to provide an intrinsic jus-
tification for Replacement. But whether it ultimately works, or not, we will
have to leave to you to decide.

2Gödel seems to have proposed a similar thought; see Potter (2004, p. 223). For discussion
of Gödel and Shoenfield, see Incurvati (2020, 90–5).

3It would be harder to prove Replacement using some formalisation of Stages-are-super-
cofinal, since Z on its own is not strong enough to define the stages, so it is not clear how one
would formalise Stages-are-super-cofinal. One option, though, is to work in some extension
of LT, as discussed in section 5.3.
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5.6 Replacement and Reflection

sth:replacement:ref:
sec

Our last attempt to justify Replacement, via Stages-are-inexhaustible, begins
with a deep and lovely result:4

Theorem 5.2 (Reflection Schema). sth:replacement:ref:

reflectionschema

For any formula φ:

∀α∃β > α(∀x1 . . . , xn ∈ Vβ)(φ(x1, . . . , xn)↔ φVβ (x1, . . . , xn))

As in Definition 5.1, φVβ is the result of restricting every quantifier in φ to the
set Vβ . So, intuitively, Reflection says this: if φ is true in the entire hierarchy,
then φ is true in arbitrarily many initial segments of the hierarchy.

Montague (1961) and Lévy (1960) showed that (suitable formulations of)
Replacement and Reflection are equivalent, modulo Z, so that adding either
gives you ZF. (We prove these results in section 5.7.) Given this equiva-
lence, one might hope to justify Reflection and Replacement via Stages-are-
inexhaustible as follows: given Stages-are-inexhaustible, the hierarchy should
be very, very tall; so tall, in fact, that nothing we can say about it is sufficient
to bound its height. And we can understand this as the thought that, if any
sentence φ is true in the entire hierarchy, then it is true in arbitrarily many
initial segments of the hierarchy. And that is just Reflection.

Again, this seems like a genuinely promising attempt to provide an intrinsic
justification for Replacement. But there is much too much to say about it here.
You must now decide for yourself whether it succeeds.5

5.7 Appendix: Results surrounding Replacement

sth:replacement:refproofs:
sec

In this section, we will prove Reflection within ZF. We will also prove a sense in
which Reflection is equivalent to Replacement. And we will prove an interesting
consequence of all this, concerning the strength of Reflection/Replacement.
Warning: this is easily the most advanced bit of mathematics in this textbook.

We’ll start with a lemma which, for brevity, employs the notational device of
overlining to deal with sequences of variables or objects. So: “ak” abbreviates
“ak1

, . . . , akn
”, where n is determined by context.

Lemma 5.3. sth:replacement:refproofs:

lemreflection

For each 1 ≤ i ≤ k, let φi(vi, x) be a formula. Then for each α
there is some β > α such that, for any a1, . . . , ak ∈ Vβ and each 1 ≤ i ≤ k:

∃xφi(ai, x) → (∃x ∈ Vβ)φi(ai, x)

Proof. We define a term µ as follows: µ(a1, . . . , ak) is the least stage, V , which
satisfies all of the following conditionals, for 1 ≤ i ≤ k:

∃xφi(ai, x) → (∃x ∈ V )φi(ai, x))

4A reminder: all formulas can have parameters (unless explicitly stated otherwise).
5Though you might like to continue by reading Incurvati (2020, 95–100).
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It is easy to confirm that µ(a1, . . . , ak) exists for all a1, . . . , ak. Now, using
Replacement and our recursion theorem, define:

S0 = Vα+1

Sn+1 = Sn ∪
⋃

{µ(a1, . . . , ak) : a1, . . . , ak ∈ Sn}

S =
⋃

m<ω

Sn.

Each Sn, and hence S itself, is a stage after Vα. Now fix a1, . . . , ak ∈ S; so
there is some n < ω such that a1, . . . , ak ∈ Sn. Fix some 1 ≤ i ≤ k, and
suppose that ∃xφi(ai, x). So (∃x ∈ µ(a1, . . . , ak))φi(ai, x) by construction, so
(∃x ∈ Sn+1)φi(ai, x) and hence (∃x ∈ S)φi(ai, x). So S is our Vβ .

We can now prove Theorem 5.2 quite straightforwardly:

Proof. Fix α. Without loss of generality, we can assume φ’s only connectives
are ∃, ¬ and ∧ (since these are expressively adequate). Let ψ1, . . . , ψk enu-
merate each of φ’s subformulas according to complexity, so that ψk = φ. By
Lemma 5.3, there is a β > α such that, for any ai ∈ Vβ and each 1 ≤ i ≤ k:

∃xψi(ai, x) → (∃x ∈ Vβ)ψi(ai, x) (*)

By induction on complexity of ψi, we will show that ψi(ai) ↔ ψ
Vβ

i (ai), for
any ai ∈ Vβ . If ψi is atomic, this is trivial. The biconditional also estab-
lishes that, when ψi is a negation or conjunction of subformulas satisfying this
property, ψi itself satisfies this property. So the only interesting case concerns
quantification. Fix ai ∈ Vβ ; then:

(∃xψi(ai, x))
Vβ iff (∃x ∈ Vβ)ψ

Vβ

i (ai, x) by definition

iff (∃x ∈ Vβ)ψi(ai, x) by hypothesis

iff ∃xψi(ai, x) by (*)

This completes the induction; the result follows as ψk = φ.

We have proved Reflection in ZF. Our proof essentially followed Montague
(1961). We now want to prove in Z that Reflection entails Replacement. The
proof follows Lévy (1960), but with a simplification.

Since we are working in Z, we cannot present Reflection in exactly the
form given above. After all, we formulated Reflection using the “Vα” notation,
and that cannot be defined in Z (see section 4.5). So instead we will offer an
apparently weaker formulation of Replacement, as follows:

Weak-Reflection. For any formula φ, there is a transitive set S such that
0, 1, and any parameters to φ are elements of S, and (∀x ∈ S)(φ↔ φS).
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To use this to prove Replacement, we will first follow Lévy (1960, first part
of Theorem 2) and show that we can “reflect” two formulas at once:

Lemma 5.4 (in Z+Weak-Reflection.). sth:replacement:refproofs:

lem:reflect

For any formulas ψ, χ, there is a
transitive set S such that 0 and 1 (and any parameters to the formulas) are
elements of S, and (∀x ∈ S)((ψ↔ ψS) ∧ (χ↔ χS)).

Proof. Let φ be the formula (z = 0 ∧ ψ) ∨ (z = 1 ∧ χ).
Here we use an abbreviation; we should spell out “z = 0” as “∀t t /∈ z” and

“z = 1” as “∀s(s ∈ z↔∀t t /∈ s)”. But since 0, 1 ∈ S and S is transitive, these
formulas are absolute for S; that is, they will apply to the same object whether
we restrict their quantifiers to S.6

By Weak-Reflection, we have some appropriate S such that:

(∀z, x ∈ S)(φ↔ φS)

i.e. (∀z, x ∈ S)(((z = 0 ∧ ψ) ∨ (z = 1 ∧ χ))↔
((z = 0 ∧ ψ) ∨ (z = 1 ∧ χ))S)

i.e. (∀z, x ∈ S)(((z = 0 ∧ ψ) ∨ (z = 1 ∧ χ))↔
((z = 0 ∧ ψS) ∨ (z = 1 ∧ χS)))

i.e. (∀x ∈ S)((ψ↔ ψS) ∧ (χ↔ χS))

The second claim entails the third because “z = 0” and “z = 1” are absolute
for S; the fourth claim follows since 0 ̸= 1.

We can now obtain Replacement, just by following and simplifying Lévy (1960,
Theorem 6):

Theorem 5.5 (in Z + Weak-Reflection). For any formula φ(v, w), and any
A, if (∀x ∈ A)∃!y φ(x, y), then {y : (∃x ∈ A)φ(x, y} exists.

Proof. Fix A such that (∀x ∈ A)∃!y φ(x, y), and define formulas:

ψ is (φ(x, z) ∧A = A)

χ is ∃y φ(x, y)

Using Lemma 5.4, since A is a parameter to ψ, there is a transitive S such that
0, 1, A ∈ S (along with any other parameters), and such that:

(∀x, z ∈ S)((ψ↔ ψS) ∧ (χ↔ χS))

So in particular:

(∀x, z ∈ S)(φ(x, z)↔ φS(x, z))

(∀x ∈ S)(∃yφ(x, y)↔ (∃y ∈ S)φS(x, y))

6More formally, letting ξ be either of these formulas, ξ(z)↔ ξS(z).
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Combining these, and observing that A ⊆ S since A ∈ S and S is transitive:

(∀x ∈ A)(∃yφ(x, y)↔ (∃y ∈ S)φ(x, y))

Now (∀x ∈ A)(∃!y ∈ S)φ(x, y), because (∀x ∈ A)∃!y φ(x, y). Now Separation
yields {y ∈ S : (∃x ∈ A)φ(x, y)} = {y : (∃x ∈ A)φ(x, y)}.

5.8 Appendix: Finite axiomatizability

sth:replacement:finiteaxiomatizability:
sec

We close this chapter by extracting some results from Replacement. The first
result is due to Montague (1961); note that it is not a proof within ZF, but a
proof about ZF:

Theorem 5.6.sth:replacement:finiteaxiomatizability:

zfnotfinitely

ZF is not finitely axiomatizable. More generally: if T is finite
and T ⊢ ZF, then T is inconsistent.

(Here, we tacitly restrict ourselves to first-order sentences whose only non-
logical primitive is ∈, and we write T ⊢ ZF to indicate that T ⊢ φ for all
φ ∈ ZF.)

Proof. Fix finite T such that T ⊢ ZF. So, T proves Reflection, i.e. Theo-
rem 5.2. Since T is finite, we can rewrite it as a single conjunction, θ. Reflect-
ing with this formula, T ⊢ ∃β(θ ↔ θVβ ). Since trivially T ⊢ θ, we find that
T ⊢ ∃β θVβ .

Now, let ψ(X) abbreviate:

θX ∧X is transitive ∧ (∀Y ∈ X)(Y is transitive→¬θY )

roughly this says: X is a transitive model of θ, and ∈-minimal in this regard.
Now, recalling that T ⊢ ∃β θVβ , by basic facts about ranks within ZF and
hence within T, we have:

T ⊢ ∃Mψ(M). (*)

Using the first conjunct of ψ(X), wheneverT ⊢ σ, we have thatT ⊢ ∀X(ψ(X)→
σX). So, by (*):

T ⊢ ∀X(ψ(X)→ (∃Nψ(N))X)

Using this, and (*) again:

T ⊢ ∃M(ψ(M) ∧ (∃Nψ(N))M )

In particular, then:

T ⊢ ∃M(ψ(M) ∧ (∃N ∈M)((N is transitive)N ∧ (θN )M ))

So, by elementary reasoning concerning transitivity:

T ⊢ ∃M(ψ(M) ∧ (∃N ∈M)(N is transitive ∧ θN ))
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So that T is inconsistent.7

Here is a similar result, noted by Potter (2004, 223):

Proposition 5.7. sth:replacement:finiteaxiomatizability:

finiteextensionofZ

Let T extend Z with finitely many new axioms. If T ⊢
ZF, then T is inconsistent. (Here we use the same tacit restrictions as for
Theorem 5.6.)

Proof. Use θ for the conjunction of all of T’s axioms except for the (infinitely
many) instances of Separation. Defining ψ from θ as in Theorem 5.6, we can
show that T ⊢ ∃Mψ(M).

As in Theorem 5.6, we can establish the schema that, whenever T ⊢ σ,
we have that T ⊢ ∀X(ψ(X) → σX). We then finish our proof, exactly as in
Theorem 5.6.

However, establishing the schema involves a little more work than in The-
orem 5.6. After all, the Separation-instances are in T, but they are not
conjuncts of θ. However, we can overcome this obstacle by proving that
T ⊢ ∀X(X is transitive → σX), for every Separation-instance σ. We leave
this to the reader.

Problem 5.2. Show that, for every Separation-instance σ, we have: Z ⊢
∀X(X is transitive→ σX). (We used this schema in Proposition 5.7.)

Problem 5.3. Show that, for every φ ∈ Z, we have ZF ⊢ φVω+ω .

Problem 5.4. Confirm the remaining schematic results invoked in the proofs
of Theorem 5.6 and Proposition 5.7.

As remarked in section 5.5, this shows that Replacement is strictly stronger
than Theorem 3.26. Or, slightly more strictly: if Z + “every well-ordering
is isomorphic to a unique ordinal” is consistent, then it fails to prove some
Replacement-instance.

7This “elementary reasoning” involves proving certain “absoluteness facts” for transitive
sets.
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Chapter 6

Ordinal Arithmetic

6.1 Introduction

sth:ord-arithmetic:intro:
sec

In chapter 3, we developed a theory of ordinal numbers. We saw in chapter 4
that we can think of the ordinals as a spine around which the remainder of the
hierarchy is constructed. But that is not the only role for the ordinals. There
is also the task of performing ordinal arithmetic.

We already gestured at this, back in section 3.2, when we spoke of ω, ω+1
and ω+ω. At the time, we spoke informally; the time has come to spell it out
properly. However, we should mention that there is not much philosophy in
this chapter; just technical developments, coupled with a (mildly) interesting
observation that we can do the same thing in two different ways.

6.2 Ordinal Addition

sth:ord-arithmetic:add:
sec

Suppose we want to add α and β. We can simply put a copy of β immediately
after a copy of α. (We need to take copies, since we know from Proposition 3.22
that either α ⊆ β or β ⊆ α.) The intuitive effect of this is to run through
an α-sequence of steps, and then to run through a β-sequence. The resulting
sequence will be well-ordered; so by Theorem 3.26 it is isomorphic to a (unique)
ordinal. That ordinal can be regarded as the sum of α and β.

That is the intuitive idea behind ordinal addition. To define it rigorously,
we start with the idea of taking copies of sets. The idea here is to use arbitrary
tags, 0 and 1, to keep track of which object came from where:

Definition 6.1.sth:ord-arithmetic:add:

defdissum

The disjoint sum of A and B is A⊔B = (A×{0})∪(B×{1}).

We next define an ordering on pairs of ordinals:

Definition 6.2. For any ordinals α1, α2, β1, β2, say that:

⟨α1, α2⟩ ∢ ⟨β1, β2⟩ iff either α2 ∈ β2

or both α2 = β2 and α1 ∈ β1
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This is a reverse lexicographic ordering, since you order by the second ele-
ment, then by the first. Now recall that we wanted to define α+β as the order
type of a copy of α followed by a copy of β. To achieve that, we say:

Definition 6.3. sth:ord-arithmetic:add:

defordplus

For any ordinals α, β, their sum is α+ β = ord(α ⊔ β,∢).

Note that we slightly abused notation here; strictly we should write “{⟨x, y⟩ ∈
α⊔ β : x ∢ y}” in place of “∢”. For brevity, though, we will continue to abuse
notation in this way in what follows.

The following result, together with Theorem 3.26, confirms that our defini-
tion is well-formed:

Lemma 6.4. sth:ord-arithmetic:add:

ordsumlessiswo

⟨α ⊔ β,∢⟩ is a well-order, for any ordinals α and β.

Proof. Obviously ∢ is connected on α ⊔ β. To show it is well-founded, fix a
non-empty X ⊆ α ⊔ β. Let Y be the subset of X whose second coordinate is
as small as possible, i.e. Y = {⟨γ, i⟩ ∈ X : (∀⟨δ, j⟩ ∈ X)i ≤ j}. Now choose the
element of Y with smallest first coordinate.

So we have a nice, explicit definition of ordinal addition. Here is an unsurprising
fact (recall that 1 = {0}, by Definition 2.7):

Proposition 6.5. α+ 1 = α+, for any ordinal α.

Proof. Consider the isomorphism f from α+ = α∪ {α} to α⊔ 1 = (α× {0})⊔
({0} × {1}) given by f(γ) = ⟨γ, 0⟩ for γ ∈ α, and f(α) = ⟨0, 1⟩.

Moreover, it is easy to show that addition obeys certain recursive conditions:

Lemma 6.6. sth:ord-arithmetic:add:

ordadditionrecursion

For any ordinals α, β, we have:

α+ 0 = α

α+ (β + 1) = (α+ β) + 1

α+ β = lsub
δ<β

(α+ δ) if β is a limit ordinal

Proof. We check case-by-case; first:

α+ 0 = ord((α× {0}) ∪ (0× {1}),∢)
= ord((α× {0}) ∪ {0},∢)
= α

α+ (β + 1) = ord((α× {0}) ∪ (β+ × {1}),∢)
= ord((α× {0}) ∪ (β × {1}),∢) + 1

= (α+ β) + 1

Now let β ̸= ∅ be a limit. If δ < β then also δ+1 < β, so α+δ is a proper initial
segment of α + β. So α + β is a strict upper bound on X = {α + δ : δ < β}.
Moreover, if α ≤ γ < α + β, then clearly γ = α + δ for some δ < β. So
α+ β = lsubδ<β(α+ δ).
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But here is a striking fact. To define ordinal addition, we could instead have
simply used the Transfinite Recursion Theorem, and laid down the recursion
equations, exactly as given in Lemma 6.6 (though using “β+” rather than
“β + 1”).

There are, then, two different ways to define operations on the ordinals. We
can define them synthetically, by explicitly constructing a well-ordered set and
considering its order type. Or we can define them recursively, just by laying
down the recursion equations. Done correctly, though, the outcome is identical.
For Theorem 3.26 guarantees that these recursion equations pin down unique
ordinals.

In many ways, ordinal arithmetic behaves just like addition of the natural
numbers. For example, we can prove the following:

Lemma 6.7.sth:ord-arithmetic:add:

ordinaladditionisnice

If α, β, γ are ordinals, then:

1.sth:ord-arithmetic:add:

ordaddition1

if β < γ, then α+ β < α+ γ

2.sth:ord-arithmetic:add:

ordaddition2

if α+ β = α+ γ, then β = γ

3.sth:ord-arithmetic:add:

ordaddition3

α+ (β + γ) = (α+ β) + γ, i.e., addition is associative

4.sth:ord-arithmetic:add:

ordaddition4

If α ≤ β, then α+ γ ≤ β + γ

Proof. We prove (3), leaving the rest as an exercise. The proof is by Simple
Transfinite Induction on γ, using Lemma 6.6. When γ = 0:

(α+ β) + 0 = α+ β = α+ (β + 0)

When γ = δ + 1, suppose for induction that (α + β) + δ = α + (β + δ); now
using Lemma 6.6 three times:

(α+ β) + (δ + 1) = ((α+ β) + δ) + 1

= (α+ (β + δ)) + 1

= α+ ((β + δ) + 1)

= α+ (β + (δ + 1))

When γ is a limit ordinal, suppose for induction that if δ ∈ γ then (α+β)+δ =
α+ (β + δ); now:

(α+ β) + γ = lsub
δ<γ

((α+ β) + δ)

= lsub
δ<γ

(α+ (β + δ))

= α+ lsub
δ<γ

(β + δ)

= α+ (β + γ)

Problem 6.1. Prove the remainder of Lemma 6.7.
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In these ways, ordinal addition should be very familiar. But, there is a cru-
cial way in which ordinal addition is not like addition on the natural numbers.

Proposition 6.8. sth:ord-arithmetic:add:

ordsumnotcommute

Ordinal addition is not commutative; 1 + ω = ω < ω + 1.

Proof. Note that 1 + ω = lsubn<ω(1 + n) = ω ∈ ω ∪ {ω} = ω+ = ω + 1.

Whilst this may initially come as a surprise, it shouldn’t. On the one hand,
when you consider 1 + ω, you are thinking about the order type you get by
putting an extra element before all the natural numbers. Reasoning as we did
with Hilbert’s Hotel in ??, intuitively, this extra first element shouldn’t make
any difference to the overall order type. On the other hand, when you consider
ω + 1, you are thinking about the order type you get by putting an extra
element after all the natural numbers. And that’s a radically different beast!

6.3 Using Ordinal Addition

sth:ord-arithmetic:using-addition:
sec

Using addition on the ordinals, we can explicitly calculate the ranks of various
sets, in the sense of Definition 4.15:

Lemma 6.9. sth:ord-arithmetic:using-addition:

rankcomputation

If rank(A) = α and rank(B) = β, then:

1. sth:ord-arithmetic:using-addition:

exrankpow

rank(℘(A)) = α+ 1

2. sth:ord-arithmetic:using-addition:

exrankpair

rank({A,B}) = max(α, β) + 1

3. sth:ord-arithmetic:using-addition:

exrankcup

rank(A ∪B) = max(α, β)

4. sth:ord-arithmetic:using-addition:

exranktuple

rank(⟨A,B⟩) = max(α, β) + 2

5. sth:ord-arithmetic:using-addition:

exranktimes

rank(A×B) ≤ max(α, β) + 2

6. sth:ord-arithmetic:using-addition:

exrankunion

rank(
⋃
A) = α when α is empty or a limit; rank(

⋃
A) = γ when α =

γ + 1

Proof. Throughout, we invoke Proposition 4.20 repeatedly.
(1). If x ⊆ A then rank(x) ≤ rank(A). So rank(℘(A)) ≤ α + 1. Since

A ∈ ℘(A) in particular, rank(℘(A)) = α+ 1.
(2). By Proposition 4.20
(3). By Proposition 4.20.
(4). By (2), twice.
(5). Note that A×B ⊆ ℘(℘(A ∪B)), and invoke (4).
(6). If α = γ + 1, there is some c ∈ A with rank(c) = γ, and no element

of A has higher rank; so rank(
⋃
A) = γ. If α is a limit ordinal, then A has

elements with rank arbitrarily close to (but strictly less than) α, so that
⋃
A

also has elements with rank arbitrarily close to (but strictly less than) α, so
that rank(

⋃
A) = α.

We leave it as an exercise to show why (5) involves an inequality.
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Problem 6.2. Produce setsA andB such that rank(A×B) = max(rank(A), rank(B)).
Produce sets A and B such that rank(A×B)max(rank(A), rank(B)) + 2. Are
any other ranks possible?

We are also now in a position to show that several reasonable notions of
what it might mean to describe an ordinal as “finite” or “infinite” coincide:

Lemma 6.10.sth:ord-arithmetic:using-addition:

ordinfinitycharacter

For any ordinal α, the following are equivalent:

1.sth:ord-arithmetic:using-addition:

ord:notinomega

α /∈ ω, i.e., α is not a natural number

2.sth:ord-arithmetic:using-addition:

ord:omegaplus

ω ≤ α

3.sth:ord-arithmetic:using-addition:

ord:oneplus

1 + α = α

4.sth:ord-arithmetic:using-addition:

ord:plusone

α ≈ α+ 1, i.e., α and α+ 1 are equinumerous

5.sth:ord-arithmetic:using-addition:

ord:infinite

α is Dedekind infinite

So we have five provably equivalent ways to understand what it takes for an
ordinal to be (in)finite.

Proof. (1) ⇒ (2). By Trichotomy.
(2) ⇒ (3). Fix α ≥ ω. By Transfinite Induction, there is some least ordinal

γ (possibly 0) such that there is a limit ordinal β with α = β + γ. Now:

1 + α = 1 + (β + γ) = (1 + β) + γ = lsub
δ<β

(1 + δ) + γ = β + γ = α.

(3) ⇒ (4). There is clearly a bijection f : (α⊔1) → (1⊔α). If 1+α = α, there
is an isomorphism g : (1 ⊔ α) → α. Now consider g ◦ f .

(4) ⇒ (5). If α ≈ α + 1, there is a bijection f : (α ⊔ 1) → α. Define
g(γ) = f(γ, 0) for each γ < α; this injection witnesses that α is Dedekind
infinite, since f(0, 1) ∈ α \ ran(g).

(5) ⇒ (1). This is Proposition 2.8.

6.4 Ordinal Multiplication

sth:ord-arithmetic:mult:
sec

We now turn to ordinal multiplication, and we approach this much like or-
dinal addition. So, suppose we want to multiply α by β. To do this, you
might imagine a rectangular grid, with width α and height β; the product of
α and β is now the result of moving along each row, then moving through the
next row. . . until you have moved through the entire grid. Otherwise put, the
product of α and β arises by replacing each element in β with a copy of α.

To make this formal, we simply use the reverse lexicographic ordering on
the Cartesian product of α and β:

Definition 6.11. For any ordinals α, β, their product α · β = ord(α× β,∢).

We must again confirm that this is a well-formed definition:
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Lemma 6.12. sth:ord-arithmetic:mult:

ordtimeslessiswo

⟨α× β,∢⟩ is a well-order, for any ordinals α and β.

Proof. Exactly as for Lemma 6.4.

And it is not hard to prove that multiplication behaves thus:

Lemma 6.13. sth:ord-arithmetic:mult:

ordtimesrecursion

For any ordinals α, β:

α · 0 = 0

α · (β + 1) = (α · β) + α

α · β = lsub
δ<β

(α · δ) when β is a limit ordinal.

Proof. Left as an exercise.

Indeed, just as in the case of addition, we could have defined ordinal multi-
plication via these recursion equations, rather than offering a direct definition.
Equally, as with addition, certain behaviour is familiar:

Lemma 6.14. sth:ord-arithmetic:mult:

ordinalmultiplicationisnice

If α, β, γ are ordinals, then:

1. sth:ord-arithmetic:mult:

ordtimes1

if α ̸= 0 and β < γ, then α · β < α · γ;

2. sth:ord-arithmetic:mult:

ordtimes2

if α ̸= 0 and α · β = α · γ, then β = γ;

3. sth:ord-arithmetic:mult:

ordtimes3

α · (β · γ) = (α · β) · γ;

4. sth:ord-arithmetic:mult:

ordtimes4

If α ≤ β, then α · γ ≤ β · γ;

5. sth:ord-arithmetic:mult:

ordtimes5

α · (β + γ) = (α · β) + (α · γ).

Proof. Left as an exercise.

You can prove (or look up) other results, to your heart’s content. But,
given Proposition 6.8, the following should not come as a surprise:

Proposition 6.15. Ordinal multiplication is not commutative: 2·ω = ω < ω·2

Proof. 2 · ω = lsubn<ω(2 · n) = ω ∈ lsubn<ω(ω + n) = ω + ω = ω · 2.

Again, the intuitive rationale is quite straightforward. To compute 2 · ω, you
replace each natural number with two entities. You would get the same order
type if you simply inserted all the “half” numbers into the natural numbers,
i.e., you considered the natural ordering on {n/2 : n ∈ ω}. And, put like that,
the order type is plainly the same as that of ω itself. But, to compute ω · 2,
you place down two copies of ω, one after the other.

Problem 6.3. Prove Lemma 6.12, Lemma 6.13, and Lemma 6.14
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6.5 Ordinal Exponentiation

sth:ord-arithmetic:expo:
sec

We now move to ordinal exponentiation. Sadly, there is no nice synthetic
definition for ordinal exponentiation.

Sure, there are explicit synthetic definitions. Here is one. Let finfun(α, β)
be the set of all functions f : α → β such that {γ ∈ α : f(γ) ̸= 0} is equinu-
merous with some natural number. Define a well-ordering on finfun(α, β) by
f ⊏ g iff f ̸= g and f(γ0) < g(γ0), where γ0 = max{γ ∈ α : f(γ) ̸= g(γ)}.
Then we can define α(β) as ord(finfun(α, β),⊏). Potter employs this explicit
definition, and then immediately explains:

The choice of this ordering is determined purely by our desire to
obtain a definition of ordinal exponentiation which obeys the ap-
propriate recursive condition. . . , and it is much harder to picture
than either the ordered sum or the ordered product. (Potter, 2004,
p. 199)

Quite. We explained addition as “a copy of α followed by a copy of β”, and
multiplication as “a β-sequence of copies of α”. But we have nothing pithy to
say about finfun(α, γ). So instead, we’ll offer the definition of ordinal exponen-
tiation just by transfinite recursion, i.e.:

Definition 6.16.sth:ord-arithmetic:expo:

ordexporecursion

α(0) = 1

α(β+1) = α(β) · α

α(β) =
⋃
δ<β

α(δ) when β is a limit ordinal

If we were working as set theorists, we might want to explore some of
the properties of ordinal exponentiation. But we have nothing much more to
add, except to note the unsurprising fact that ordinal exponentiation does not
commute. Thus 2(ω) =

⋃
δ<ω 2(δ) = ω, whereas ω(2) = ω · ω. But then, we

should not expect exponentiation to commute, since it does not commute with
natural numbers: 2(3) = 8 < 9 = 3(2).

Problem 6.4. Using Transfinite Induction, prove that, if we define α(β) =
ord(finfun(α, β),⊏), we obtain the recursion equations of Definition 6.16.
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Chapter 7

Cardinals

7.1 Cantor’s Principle

sth:cardinals:cp:
sec

Cast your mind back to section 3.5. We were discussing well-ordered sets, and
suggested that it would be nice to have objects which go proxy for well-orders.
With this is mind, we introduced ordinals, and then showed in Corollary 3.28
that these behave as we would want them to, i.e.:

ord(A,<) = ord(B,⋖) iff ⟨A,<⟩ ∼= ⟨B,⋖⟩.

Cast your mind back even further, to ??. There, working näıvely, we intro-
duced the notion of the “size” of a set. Specifically, we said that two sets are
equinumerous, A ≈ B, just in case there is a bijection f : A → B. This is
an intrinsically simpler notion than that of a well-ordering: we are only inter-
ested in bijections, and not (as with order-isomorphisms) whether the bijections
“preserve any structure”.

This all gives rise to an obvious thought. Just as we introduced certain
objects, ordinals, to calibrate well-orders, we can introduce certain objects,
cardinals, to calibrate size. That is the aim of this chapter.

Before we say what these cardinals will be, we should lay down a principle
which they ought to satisfy. Writing |X| for the cardinality of the set X, we
would want them to obey:

|A| = |B| iff A ≈ B.

We’ll call this Cantor’s Principle, since Cantor was probably the first to have it
very clearly in mind. (We’ll say more about its relationship to Hume’s Principle
in section 7.5.) So our aim is to define |X|, for each X, in such a way that it
delivers Cantor’s Principle.

7.2 Cardinals as Ordinals

sth:cardinals:cardsasords:
sec
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In fact, our theory of cardinals will just make (shameless) use of our theory of
ordinals. That is: we will just define cardinals as certain specific ordinals. In
particular, we will offer the following:

Definition 7.1.sth:cardinals:cardsasords:

defcardinalasordinal

If A can be well-ordered, then |A| is the least ordinal γ such
that A ≈ γ. For any ordinal γ, we say that γ is a cardinal iff γ = |γ|.

We just used the phrase “A can be well-ordered”. As is almost always the
case in mathematics, the modal locution here is just a hand-waving gloss on
an existential claim: to say “A can be well-ordered” is just to say “there is a
relation which well-orders A”.

But there is a snag with Definition 7.1. We would like it to be the case
that every set has a size, i.e., that |A| exists for every A. The definition we
just gave, though, begins with a conditional: “If A can be well-ordered. . . ”.
If there is some set A which cannot be well-ordered, then our definition will
simply fail to define an object |A|.

So, to use Definition 7.1, we need a guarantee that every set can be well-
ordered. Sadly, though, this guarantee is unavailable in ZF. So, if we want to
use Definition 7.1, there is no alternative but to add a new axiom, such as:

Axiom (Well-Ordering). Every set can be well-ordered.

We will discuss whether the Well-Ordering Axiom is acceptable in chapter 9.
From now on, though, we will simply help ourselves to it. And, using it, it
is quite straightforward to prove that cardinals (as defined in Definition 7.1)
exist and behave nicely:

Lemma 7.2.sth:cardinals:cardsasords:

lem:CardinalsExist

For every set A:

1.sth:cardinals:cardsasords:

cardaexists

|A| exists and is unique;

2.sth:cardinals:cardsasords:

cardaapprox

|A| ≈ A;

3.sth:cardinals:cardsasords:

cardaidem

|A| is a cardinal, i.e., |A| = ||A||;

Proof. Fix A. By Well-Ordering, there is a well-ordering ⟨A,R⟩. By Theo-
rem 3.26, ⟨A,R⟩ is isomorphic to a unique ordinal, β. So A ≈ β. By Transfinite
Induction, there is a uniquely least ordinal, γ, such that A ≈ γ. So |A| = γ,
establishing (1) and (2). To establish (3), note that if δ ∈ γ then δ ≺ A, by our
choice of γ, so that also δ ≺ γ since equinumerosity is an equivalence relation
(??). So γ = |γ|.

The next result guarantees Cantor’s Principle, and more besides. (Note
that cardinals inherit their ordering from the ordinals, i.e., a < b iff a ∈ b. In
formulating this, we will use Fraktur letters for objects we know to be cardinals.
This is fairly standard. A common alternative is to use Greek letters, since
cardinals are ordinals, but to choose them from the middle of the alphabet,
e.g.: κ, λ.):
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Lemma 7.3. sth:cardinals:cardsasords:

lem:CardinalsBehaveRight

For any sets A and B:

A ≈ B iff |A| = |B|
A ⪯ B iff |A| ≤ |B|
A ≺ B iff |A| < |B|

Proof. We will prove the left-to-right direction of the second claim (the other
cases are similar, and left as an exercise). So, consider the following diagram:

A B

|A| |B|

The double-headed arrows indicate bijections, whose existence is guaranteed
by Lemma 7.2. In assuming that A ⪯ B, there is an injection A → B. Now,
chasing the arrows around from |A| to A to B to |B|, we obtain an injection
|A| → |B| (the dashed arrow).

We can also use Lemma 7.3 to re-prove Schröder–Bernstein. This is the claim
that if A ⪯ B and B ⪯ A then A ≈ B. We stated this as ??, but first proved
it—with some effort—in ??. Now consider:

Re-proof of Schröder-Bernstein. If A ⪯ B and B ⪯ A, then |A| ≤ |B| and
|B| ≤ |A| by Lemma 7.3. So |A| = |B| and A ≈ B by Trichotomy and
Lemma 7.3.

Whilst this is a very simple proof, it implicitly relies on both Replacement
(to secure Theorem 3.26) and on Well-Ordering (to guarantee Lemma 7.3). By
contrast, the proof of ?? was much more self-standing (indeed, it can be carried
out in Z−).

7.3 ZFC: A Milestone

sth:cardinals:zfc:
sec

With the addition of Well-Ordering, we have reached the final theoretical mile-
stone. We now have all the axioms required for ZFC. In detail:

Definition 7.4. The theory ZFC has these axioms: Extensionality, Union,
Pairs, Powersets, Infinity, Foundation, Well-Ordering and all instances of the
Separation and Replacement schemes. Otherwise put, ZFC addsWell-Ordering
to ZF.

ZFC stands for Zermelo-Fraenkel set theory with Choice. Now this might
seem slightly odd, since the axiom we added was called “Well-Ordering”, not
“Choice”. But, when we later formulate Choice, it will turn out that Well-
Ordering is equivalent (modulo ZF) to Choice (see Theorem 9.6). So which to
take as our “basic” axiom is a matter of indifference. And the name “ZFC” is
entirely standard in the literature.
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7.4 Finite, Enumerable, Non-enumerable

sth:cardinals:classing:
sec

Now that we have been introduced to cardinals, it is worth spending a little time
talking about different varieties of cardinals; specifically, finite, enumerable,
and non-enumerable cardinals.

Our first two results entail that the finite cardinals will be exactly the finite
ordinals, which we defined as our natural numbers back in Definition 2.7:

Proposition 7.5.sth:cardinals:classing:

finitecardisoequal

Let n,m ∈ ω. Then n = m iff n ≈ m.

Proof. Left-to-right is trivial. To prove right-to-left, suppose n ≈ m although
n ̸= m. By Trichotomy, either n ∈ m or m ∈ n; suppose n ∈ m without loss
of generality. Then n ⊊ m and there is a bijection f : m → n, so that m is
Dedekind infinite, contradicting Proposition 2.8.

Corollary 7.6.sth:cardinals:classing:

naturalsarecardinals

If n ∈ ω, then n is a cardinal.

Proof. Immediate.

It also follows that several reasonable notions of what it might mean to describe
a cardinal as “finite” or “infinite” coincide:

Theorem 7.7.sth:cardinals:classing:

generalinfinitycharacter

For any set A, the following are equivalent:

1.sth:cardinals:classing:

card:notinomega

|A| /∈ ω, i.e., A is not a natural number;

2.sth:cardinals:classing:

card:omegaplus

ω ≤ |A|;

3.sth:cardinals:classing:

card:infinite

A is Dedekind infinite.

Proof. From Lemma 6.10, Lemma 7.3, and Corollary 7.6.

This licenses the following definition of some notions which we used rather
informally in ??:

Definition 7.8.sth:cardinals:classing:

defnfinite

We say that A is finite iff |A| is a natural number, i.e.,
|A| ∈ ω. Otherwise, we say that A is infinite.

But note that this definition is presented against the background of ZFC. After
all, we needed Well-Ordering to guarantee that every set has a cardinality. And
indeed, without Well-Ordering, there can be a set which is neither finite nor
Dedekind infinite. We will return to this sort of issue in chapter 9. For now,
we continue to rely upon Well-Ordering.

Let us now turn from the finite cardinals to the infinite cardinals. Here are
two elementary points:

Corollary 7.9.sth:cardinals:classing:

omegaisacardinal

ω is the least infinite cardinal.

Proof. ω is a cardinal, since ω is Dedekind infinite and if ω ≈ n for any n ∈ ω
then n would be Dedekind infinite, contradicting Proposition 2.8. Now ω is
the least infinite cardinal by definition.
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Corollary 7.10. Every infinite cardinal is a limit ordinal.

Proof. Let α be an infinite successor ordinal, so α = β + 1 for some β. By
Proposition 7.5, β is also infinite, so β ≈ β + 1 by Lemma 6.10. Now |β| =
|β + 1| = |α| by Lemma 7.3, so that α ̸= |α|.

Now, as early as ??, we flagged we can distinguish between enumerable and
non-enumerable infinite sets. That definition naturally leads to the following:

Proposition 7.11. A is enumerable iff |A| ≤ ω, and A is non-enumerable iff
ω < |A|.

Proof. By Trichotomy, the two claims are equivalent, so it suffices to prove
that A is enumerable iff |A| ≤ ω. For right-to-left : if |A| ≤ ω, then A ⪯ ω by
Lemma 7.3 and Corollary 7.9. For left-to-right : suppose A is enumerable; then
by ?? there are three possible cases:

1. if A = ∅, then |A| = 0 ∈ ω, by Corollary 7.6 and Lemma 7.3.

2. if n ≈ A, then |A| = n ∈ ω, by Corollary 7.6 and Lemma 7.3.

3. if ω ≈ A, then |A| = ω, by Corollary 7.9.

So in all cases, |A| ≤ ω.

Indeed, ω has a special place. Whilst there are many countable ordinals:

Corollary 7.12. ω is the only enumerable infinite cardinal.

Proof. Let a be an enumerable infinite cardinal. Since a is infinite, ω ≤ a.
Since a is an enumerable cardinal, a = |a| ≤ ω. So a = ω by Trichotomy.

Of course, there are infinitely many cardinals. So we might ask: How
many cardinals are there? The following results show that we might want to
reconsider that question.

Proposition 7.13. sth:cardinals:classing:

unioncardinalscardinal

If every member of X is a cardinal, then
⋃
X is a cardi-

nal.

Proof. It is easy to check that
⋃
X is an ordinal. Let α ∈

⋃
X be an ordinal;

then α ∈ b ∈ X for some cardinal b. Since b is a cardinal, α ≺ b. Since
b ⊆

⋃
X, we have b ⪯

⋃
X, and so α ̸≈

⋃
X. Generalising,

⋃
X is a cardinal.

Theorem 7.14. sth:cardinals:classing:

lem:NoLargestCardinal

There is no largest cardinal.

Proof. For any cardinal a, Cantor’s Theorem (??) and Lemma 7.2 entail that
a < |℘(a)|.

Theorem 7.15. The set of all cardinals does not exist.
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Proof. For reductio, suppose C = {a : a is a cardinal}. Now
⋃
C is a cardinal

by Proposition 7.13, so by Theorem 7.14 there is a cardinal b >
⋃
C. By

definition b ∈ C, so b ⊆
⋃
C, so that b ≤

⋃
C, a contradiction.

You should compare this with both Russell’s Paradox and Burali-Forti.

7.5 Appendix: Hume’s Principle

sth:cardinals:hp:
sec

In section 7.1, we described Cantor’s Principle. This was:

|A| = |B| iff A ≈ B.

This is very similar to what is now called Hume’s Principle, which says:

#xF (x) = #xG(x) iff F ∼ G

where ‘F ∼ G’ abbreviates that there are exactly as many F s as Gs, i.e., the
F s can be put into a bijection with the Gs, i.e.:

∃R(∀v∀y(Rvy→ (Fv ∧Gy)) ∧
∀v(Fv→∃!y Rvy) ∧
∀y(Gy→∃!v Rvy))

But there is a type-difference between Hume’s Principle and Cantor’s Principle.
In the statement of Cantor’s Principle, the variables “A” and “B” are first-
order terms which stand for sets. In the statement of Hume’s Principle, “F”,
“G” and “R” are not first-order terms; rather, they are in predicate position.
(Maybe they stand for properties.) So we might gloss Hume’s Principle in
English as: the number of F s is the number of Gs iff the F s are bijective with
the Gs. This is called Hume’s Principle, because Hume once wrote this:

When two numbers are so combined as that the one has always an
unit answering to every unit of the other, we pronounce them equal.
(Hume, 1740, Pt.III Bk.1 §1)

And Hume’s Principle was brought to contemporary mathematico-logical promi-
nence by Frege (1884, §63), who quoted this passage from Hume, before (in
effect) sketching (what we have called) Hume’s Principle.

You should note the structural similarity between Hume’s Principle and
Basic Law V. We formulated this in section 1.6 as follows:

ϵxF (x) = ϵxG(x)iff ∀x (F (x)↔G(x)).

And, at this point, some commentary and comparison might help.
There are two ways to take a principle like Hume’s Principle or Basic Law V:

predicatively or impredicatively (recall section 1.3). On the impredicative read-
ing of Basic Law V, for each F , the object ϵxF (x) falls within the domain of
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quantification that we used in formulating Basic Law V itself. Similarly, on
the impredicative reading of Hume’s Principle, for each F , the object #xF (x)
falls within the domain of quantification that we used in formulating Hume’s
Principle. By contrast, on the predicative understanding, the objects ϵxF (x)
and #xF (x) would be entities from some different domain.

Now, if we read Basic Law V impredicatively, it leads to inconsistency,
via Näıve Comprehension (for the details, see section 1.6). Much like Näıve
Comprehension, it can be rendered consistent by reading it predicatively. But
it probably will not do everything that we wanted it to.

Hume’s Principle, however, can consistently be read impredicatively. And,
read thus, it is quite powerful.

To illustrate: consider the predicate “x ̸= x”, which obviously nothing
satisfies. Hume’s Principle now yields an object #x(x ̸= x). We might treat
this as the number 0. Now, on the impredicative understanding—but only on
the impredicative understanding—this entity 0 falls within our original domain
of quantification. So we can sensibly apply Hume’s Principle with the predicate
“x = 0” to obtain an object #x(x = 0). We might treat this as the number 1.
Moreover, Hume’s Principle entails that 0 ̸= 1, since there cannot be a bijection
from the non-self-identical objects to the objects identical with 0 (there are
none of the former, but one of the latter). Now, working impredicatively again,
1 falls within our original domain of quantification. So we can sensibly apply
Hume’s Principle with the predicate “(x = 0 ∨ x = 1)” to obtain an object
#x(x = 0 ∨ x = 1). We might treat this as the number 2, and we can show
that 0 ̸= 2 and 1 ̸= 2 and so on.

In short, taken impredicatively, Hume’s Principle entails that there are
infinitely many objects. And this has encouraged neo-Fregean logicists to take
Hume’s Principle as the foundation for arithmetic.

Frege himself, though, did not take Hume’s Principle as his foundation for
arithmetic. Instead, Frege proved Hume’s Principle from an explicit definition:
#xF (x) is defined as the extension of the concept F ∼ Φ. In modern terms,
we might attempt to render this as #xF (x) = {G : F ∼ G}; but this will pull
us back into the problems of Näıve Comprehension.

62 set-theory rev: c9d2ed6 (2023-09-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Chapter 8

Cardinal Arithmetic

8.1 Defining the Basic Operations

sth:card-arithmetic:opps:
sec

Since we do not need to keep track of order, cardinal arithmetic is rather easier
to define than ordinal arithmetic. We will define addition, multiplication, and
exponentiation simultaneously.

Definition 8.1. When a and b are cardinals:

a⊕ b = |a ⊔ b|
a⊗ b = |a× b|

ab =
∣∣ba∣∣

where XY = {f : f is a function X → Y }. (It is easy to show that XY exists
for any sets X and Y ; we leave this as an exercise.)

Problem 8.1. Prove in Z− that XY exists for any sets X and Y . Work-
ing in ZF, compute rank(XY ) from rank(X) and rank(Y ), in the manner of
Lemma 6.9.

It might help to explain this definition. Concerning addition: this uses the
notion of disjoint sum, ⊔, as defined in Definition 6.1; and it is easy to see that
this definition gives the right verdict for finite cases. Concerning multiplica-
tion: ?? tells us that if A has n members and B has m members then A×B has
n ·m members, so our definition simply generalises the idea to transfinite mul-
tiplication. Exponentiation is similar: we are simply generalising the thought
from the finite to the transfinite. Indeed, in certain ways, transfinite cardinal
arithmetic looks much more like “ordinary” arithmetic than does transfinite
ordinal arithmetic:

Proposition 8.2.sth:card-arithmetic:opps:

cardplustimescommute

⊕ and ⊗ are commutative and associative.

Proof. For commutativity, by Lemma 7.3 it suffices to observe that (a ⊔ b) ≈
(b ⊔ a) and (a× b) ≈ (b× a). We leave associativity as an exercise.
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Problem 8.2. Prove that ⊕ and ⊗ are associative.

Proposition 8.3. A is infinite iff |A| ⊕ 1 = 1⊕ |A| = |A|.

Proof. As in Theorem 7.7, from Lemma 6.10 and Lemma 7.3.

This explains why we need to use different symbols for ordinal versus car-
dinal addition/multiplication: these are genuinely different operations. This
next pair of results shows that ordinal versus cardinal exponentiation are also
different operations. (Recall that Definition 2.7 entails that 2 = {0, 1}):

Lemma 8.4. sth:card-arithmetic:opps:

lem:SizePowerset2Exp

|℘(A)| = 2|A|, for any A.

Proof. For each subset B ⊆ A, let χB ∈ A2 be given by:

χB(x) =

{
1 if x ∈ B

0 otherwise.

Now let f(B) = χB ; this defines a bijection f : ℘(A) → A2. So ℘(A) ≈ A2.
Hence ℘(A) ≈ |A|2, so that |℘(A)| =

∣∣|A|2
∣∣ = 2|A|.

This snappy proof essentially subsumes the discussion of ??. There, we
showed how to “reduce” the uncountability of ℘(ω) to the uncountability of
the set of infinite binary strings, Bω. In effect, Bω is just ω2; and the preceding
proof showed that the reasoning we went through in ?? will go through using
any set A in place of ω. The result also yields a quick fact about cardinal
exponentiation:

Corollary 8.5. sth:card-arithmetic:opps:

cantorcor

a < 2a for any cardinal a.

Proof. From Cantor’s Theorem (??) and Lemma 8.4.

So ω < 2ω. But note: this is a result about cardinal exponentiation. It should
be contrasted with ordinal exponentiation, since in the latter case ω = 2(ω)

(see section 6.5).
Whilst we are on the topic of cardinal exponentiation, we can also be a bit

more precise about the “way” in which R is non-enumerable.

Theorem 8.6. sth:card-arithmetic:opps:

continuumis2aleph0

|R| = 2ω

Proof skeleton. There are plenty of ways to prove this. The most straightfor-
ward is to argue that ℘(ω) ⪯ R and R ⪯ ℘(ω), and then use Schröder-Bernstein
to infer that R ≈ ℘(ω), and Lemma 8.4 to infer that |R| = 2ω. We leave it as
an (illuminating) exercise to define injections f : ℘(ω) → R and g : R → ℘(ω).

Problem 8.3. Complete the proof of Theorem 8.6, by showing that ℘(ω) ⪯ R
and R ⪯ ℘(ω).
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8.2 Simplifying Addition and Multiplication

sth:card-arithmetic:simp:
sec

It turns out that transfinite cardinal addition and multiplication is extremely
easy. This follows from the fact that cardinals are (certain) ordinals, and so
well-ordered, and so can be manipulated in a certain way. Showing this, though,
is not so easy. To start, we need a tricksy definition:

Definition 8.7. We define a canonical ordering, ◁, on pairs of ordinals, by
stipulating that ⟨α1, α2⟩◁ ⟨β1, β2⟩ iff either:

1. max(α1, α2) < max(β1, β2); or

2. max(α1, α2) = max(β1, β2) and α1 < β1; or

3. max(α1, α2) = max(β1, β2) and α1 = β1 and α2 < β2

Lemma 8.8. ⟨α× α,◁⟩ is a well-order, for any ordinal α.

Proof. Evidently ◁ is connected on α × α. For suppose that neither ⟨α1, α2⟩
nor ⟨β1, β2⟩ is ◁-less than the other. Then max(α1, α2) = max(β1, β2) and
α1 = β1 and α2 = β2, so that ⟨α1, α2⟩ = ⟨β1, β2⟩.

To show well-ordering, let X ⊆ α× α be non-empty. Since α is an ordinal,
some δ is the least member of {max(γ1, γ2) : ⟨γ1, γ2⟩ ∈ X}. Now discard
all pairs from {⟨γ1, γ2⟩ ∈ X : max(γ1, γ2) = δ} except those with least first
coordinate; from among these, the pair with least second coordinate is the
◁-least element of X.

Now for a teensy, simple observation:

Proposition 8.9.sth:card-arithmetic:simp:

simplecardproduct

If α ≈ β, then α× α ≈ β × β.

Proof. Just let f : α→ β induce ⟨γ1, γ2⟩ 7→ ⟨f(γ1), f(γ2)⟩.

And now we will put all this to work, in proving a crucial lemma:

Lemma 8.10.sth:card-arithmetic:simp:

alphatimesalpha

α ≈ α× α, for any infinite ordinal α

Proof. For reductio, let α be the least infinite ordinal for which this is false. ??
shows that ω ≈ ω×ω, so ω ∈ α. Moreover, α is a cardinal: suppose otherwise,
for reductio; then |α| ∈ α, so that |α| ≈ |α| × |α|, by hypothesis; and |α| ≈ α
by definition; so that α ≈ α× α by Proposition 8.9.

Now, for each ⟨γ1, γ2⟩ ∈ α× α, consider the segment:

Seg(γ1, γ2) = {⟨δ1, δ2⟩ ∈ α× α : ⟨δ1, δ2⟩◁ ⟨γ1, γ2⟩}

Letting γ = max(γ1, γ2), note that ⟨γ1, γ2⟩ ◁ ⟨γ + 1, γ + 1⟩. So, when γ is
infinite, observe:

Seg(γ1, γ2) ≾ ((γ + 1) · (γ + 1))

≈ (γ · γ), by Lemma 6.10 and Proposition 8.9

≈ γ, by the induction hypothesis

≺ α, since α is a cardinal
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So ord(α × α,◁) ≤ α, and hence α × α ⪯ α. Since of course α ⪯ α × α, the
result follows by Schröder-Bernstein.

Finally, we get to our simplifying result:

Theorem 8.11. sth:card-arithmetic:simp:

cardplustimesmax

If a, b are infinite cardinals, then:

a⊗ b = a⊕ b = max(a, b).

Proof. Without loss of generality, suppose a = max(a, b). Then invoking
Lemma 8.10, a⊗ a = a ≤ a⊕ b ≤ a⊕ a ≤ a⊗ a.

Similarly, if a is infinite, an a-sized union of ≤ a-sized sets has size ≤ a:

Proposition 8.12. sth:card-arithmetic:simp:

kappaunionkappasize

Let a be an infinite cardinal. For each ordinal β ∈ a, let

Xβ be a set with |Xβ | ≤ a. Then
∣∣∣⋃β∈aXβ

∣∣∣ ≤ a.

Proof. For each β ∈ a, fix an injection fβ : Xβ → a.1 Define an injection
g :

⋃
β∈aXβ → a × a by g(v) = ⟨β, fβ(v)⟩, where v ∈ Xβ and v /∈ Xγ for any

γ ∈ β. Now
⋃

β∈aXβ ⪯ a× a ≈ a by Theorem 8.11.

8.3 Some Simplification with Cardinal Exponentiation

sth:card-arithmetic:expotough:
sec

Whilst defining ◁ was a little involved, the upshot is a useful result concerning
cardinal addition and multiplication, Theorem 8.11. Transfinite exponentia-
tion, however, cannot be simplified so straightforwardly. To explain why, we
start with a result which extends a familiar pattern from the finitary case
(though its proof is at a high level of abstraction):

Proposition 8.13. sth:card-arithmetic:expotough:

simplecardexpo

ab⊕c = ab⊗ac and (ab)c = ab⊗c, for any cardinals a, b, c.

Proof. For the first claim, consider a function f : (b⊔ c) → a. Now “split this”,
by defining fb(β) = f(β, 0) for each β ∈ b, and fc(γ) = f(γ, 1) for each γ ∈ c.
The map f 7→ (fb × fc) is a bijection b⊔ca → (ba× ca).

For the second claim, consider a function f : c → (ba); so for each γ ∈ c
we have some function f(γ) : b → a. Now define f∗(β, γ) = (f(γ))(β) for each
⟨β, γ⟩ ∈ b× c. The map f 7→ f∗ is a bijection c(ba) → b⊗ca.

Now, what we would like is an easy way to compute ab when we are dealing
with infinite cardinals. Here is a nice step in this direction:

Proposition 8.14. sth:card-arithmetic:expotough:

cardexpo2reduct

If 2 ≤ a ≤ b and b is infinite, then ab = 2b

1How are these “fixed”? See section 9.5.
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Proof.

2b ≤ ab, as 2 ≤ a

≤ (2a)b, by Lemma 8.4

= 2a⊗b, by Proposition 8.13

= 2b, by Theorem 8.11

We should not really expect to be able to simplify this any further, since
b < 2b by Lemma 8.4. However, this does not tell us what to say about ab

when b < a. Of course, if b is finite, we know what to do.

Proposition 8.15. If a is infinite and n ∈ ω then an = a

Proof. an = a⊗ a⊗ . . .⊗ a = a, by Theorem 8.11.

Additionally, in some other cases, we can control the size of ab:

Proposition 8.16. If 2 ≤ b < a ≤ 2b and b is infinite, then ab = 2b

Proof. 2b ≤ ab ≤ (2b)b = 2b⊗b = 2b, reasoning as in Proposition 8.14.

But, beyond this point, things become rather more subtle.

8.4 The Continuum Hypothesis

sth:card-arithmetic:ch:
sec

The previous result hints (correctly) that cardinal exponentiation would be
quite easy, if infinite cardinals are guaranteed to “play straightforwardly” with
powers of 2, i.e., (by Lemma 8.4) with taking powersets. But we cannot assume
that infinite cardinals do play straightforwardly powersets.

To start unpacking this, we introduce some nice notation.

Definition 8.17. Where a⊕ is the least cardinal strictly greater than a, we
define two infinite sequences:

ℵ0 = ω ℶ0 = ω

ℵα+1 = (ℵα)
⊕ ℶα+1 = 2ℶα

ℵα =
⋃
β<α

ℵβ ℶα =
⋃
β<α

ℶβ when α is a limit ordinal.

The definition of a⊕ is in order, since Theorem 7.14 tells us that, for each
cardinal a, there is some cardinal greater than a, and Transfinite Induction
guarantees that there is a least cardinal greater than a. The rest of the defini-
tion of a is provided by transfinite recursion.

Cantor introduced this “ℵ” notation; this is aleph, the first letter in the
Hebrew alphabet and the first letter in the Hebrew word for “infinite”. Peirce
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introduced the “ℶ” notation; this is beth, which is the second letter in the
Hebrew alphabet.2 Now, these notations provide us with infinite cardinals.

Proposition 8.18. ℵα and ℶα are cardinals, for every ordinal α.

Proof. Both results hold by a simple transfinite induction. ℵ0 = ℶ0 = ω is a
cardinal by Corollary 7.9. Assuming ℵα and ℶα are both cardinals, ℵα+1 and
ℶα+1 are explicitly defined as cardinals. And the union of a set of cardinals is
a cardinal, by Proposition 7.13.

Moreover, every infinite cardinal is an ℵ:

Proposition 8.19. If a is an infinite cardinal, then a = ℵγ for some unique
γ.

Proof. By transfinite induction on cardinals. For induction, suppose that if
b < a then b = ℵγb

. If a = b⊕ for some b, then a = (ℵγb
)⊕ = ℵγb+1. If a is not

the successor of any cardinal, then since cardinals are ordinals a =
⋃

b<a b =⋃
b<a ℵγb

, so a = ℵγ where γ =
⋃

b<a γb.

Since every infinite cardinal is an ℵ, this prompts us to ask: is every infinite
cardinal a ℶ? Certainly if that were the case, then the infinite cardinals would
“play straightforwardly” with the operation of taking powersets. Indeed, we
would have the following:

Generalized Continuum Hypothesis (GCH). ℵα = ℶα, for all α.

Moreover, if GCH held, then we could make some considerable simplifica-
tions with cardinal exponentiation. In particular, we could show that when
b < a, the value of ab is trapped by a ≤ ab ≤ a⊕. We could then go on to give
precise conditions which determine which of the two possibilities obtains (i.e.,
whether a = ab or ab = a⊕).3

But GCH is a hypothesis, not a theorem. In fact, Gödel (1938) proved that
if ZFC is consistent, then so is ZFC + GCH. But it later turned out that
we can equally add ¬GCH to ZFC. Indeed, consider the simplest non-trivial
instance of GCH, namely:

Continuum Hypothesis (CH). ℵ1 = ℶ1.

Cohen (1963) proved that if ZFC is consistent then so is ZFC+ ¬CH. So
the Continuum Hypothesis is independent from ZFC.

2Peirce used this notation in a letter to Cantor of December 1900. Unfortunately, Peirce
also gave a bad argument there that ℶα does not exist for α ≥ ω.

3The condition is dictated by cofinality.
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The Continuum Hypothesis is so-called, since “the continuum” is another
name for the real line, R. Theorem 8.6 tells us that |R| = ℶ1. So the Contin-
uum Hypothesis states that there is no cardinal between the cardinality of the
natural numbers, ℵ0 = ℶ0, and the cardinality of the continuum, ℶ1.

Given the independence of (G)CH from ZFC, what should say about their
truth? Well, there is much to say. Indeed, and much fertile recent work in
set theory has been directed at investigating these issues. But two very quick
points are certainly worth emphasising.

First: it does not immediately follow from these formal independence results
that either GCH or CH is indeterminate in truth value. After all, maybe we
just need to add more axioms, which strike us as natural, and which will settle
the question one way or another. Gödel himself suggested that this was the
right response.

Second: the independence of CH from ZFC is certainly striking, but it is
certainly not incredible (in the literal sense). The point is simply that, for
all ZFC tells us, moving from cardinals to their successors may involve a less
blunt tool than simply taking powersets.

With those two observations made, if you want to know more, you will now
have to turn to the various philosophers and mathematicians with horses in
the race.4

8.5 ℵ-Fixed Points

sth:card-arithmetic:fix:
sec

In chapter 4, we suggested that Replacement stands in need of justification,
because it forces the hierarchy to be rather tall. Having done some cardinal
arithmetic, we can give a little illustration of the height of the hierarchy.

Evidently 0 < ℵ0, and 1 < ℵ1, and 2 < ℵ2. . . and, indeed, the difference
in size only gets bigger with every step. So it is tempting to conjecture that
κ < ℵκ for every ordinal κ.

But this conjecture is false, given ZFC. In fact, we can prove that there
are ℵ-fixed-points, i.e., cardinals κ such that κ = ℵκ.

Proposition 8.20.sth:card-arithmetic:fix:

alephfixed

There is an ℵ-fixed-point.

Proof. Using recursion, define:

κ0 = 0

κn+1 = ℵκn

κ =
⋃
n<ω

κn

Now κ is a cardinal by Proposition 7.13. But now:

κ =
⋃
n<ω

κn+1 =
⋃
n<ω

ℵκn
=

⋃
α<κ

ℵα = ℵκ

4Though you might want to start by reading Potter (2004, §15.6).

set-theory rev: c9d2ed6 (2023-09-14) by OLP / CC–BY 69

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


Boolos once wrote an article about exactly the ℵ-fixed-point we just con-
structed. After noting the existence of κ, at the start of his article, he said:

[κ is] a pretty big number, by the lights of those with no previous
exposure to set theory, so big, it seems to me, that it calls into
question the truth of any theory, one of whose assertions is the
claim that there are at least κ objects. (Boolos, 2000, p. 257)

And he ultimately concluded his paper by asking:

[do] we suspect that, however it may have been at the beginning of
the story, by the time we have come thus far the wheels are spinning
and we are no longer listening to a description of anything that is
the case? (Boolos, 2000, p. 268)

If we have, indeed, outrun “anything that is the case”, then we must point the
finger of blame directly at Replacement. For it is this axiom which allows our
proof to work. In which case, one assumes, Boolos would need to revisit the
claim he made, a few decades earlier, that Replacement has “no undesirable”
consequences (see section 5.3).

But is the existence of κ so bad? It might help, here, to consider Russell’s
Tristram Shandy paradox. Tristram Shandy documents his life in his diary, but
it takes him a year to record a single day. With every passing year, Tristram
falls further and further behind: after one year, he has recorded only one day,
and has lived 364 days unrecorded days; after two years, he has only recorded
two days, and has lived 728 unrecorded days; after three years, he has only
recorded three days, and lived 1092 unrecorded days . . . 5 Still, if Tristram is
immortal, Tristram will manage to record every day, for he will record the nth
day on the nth year of his life. And so, “at the end of time”, Tristram will
have a complete diary.

Now: why is this so different from the thought that α is smaller than ℵα—
and indeed, increasingly, desperately smaller—up until κ, at which point, we
catch up, and κ = ℵκ?

Setting that aside, and assuming we accept ZFC, let’s close with a little
more fun concerning fixed-point constructions. The next three results establish,
intuitively, that there is a (non-trivial) point at which the hierarchy is as wide
as it is tall:

Proposition 8.21. sth:card-arithmetic:fix:

bethfixed

There is a ℶ-fixed-point, i.e., a κ such that κ = ℶκ.

Proof. As in Proposition 8.20, using “ℶ” in place of “ℵ”.

Proposition 8.22. sth:card-arithmetic:fix:

stagesize

|Vω+α| = ℶα. If ω · ω ≤ α, then |Vα| = ℶα.

Proof. The first claim holds by a simple transfinite induction. The second
claim follows, since if ω ·ω ≤ α then ω+α = α. To establish this, we use facts

5Forgetting about leap years.
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about ordinal arithmetic from chapter 6. First note that ω · ω = ω · (1 + ω) =
(ω · 1) + (ω · ω) = ω + (ω · ω). Now if ω · ω ≤ α, i.e., α = (ω · ω) + β for some
β, then ω + α = ω + ((ω · ω) + β) = (ω + (ω · ω)) + β = (ω · ω) + β = α.

Corollary 8.23. There is a κ such that |Vκ| = κ.

Proof. Let κ be a ℶ-fixed point, as given by Proposition 8.21. Clearly ω ·ω < κ.
So |Vκ| = ℶκ = κ by Proposition 8.22.

There are as many stages beneath Vκ as there are elements of Vκ. Intuitively,
then, Vκ is as wide as it is tall. This is very Tristram-Shandy-esque: we move
from one stage to the next by taking powersets, thereby making our hierarchy
much bigger with each step. But, “in the end”, i.e., at stage κ, the hierarchy’s
width catches up with its height.

One might ask: How often does the hierarchy’s width match its height? The
answer is: As often as there are ordinals. But this needs a little explanation.

We define a term τ as follows. For any A, let:

τ0(A) = |A|
τn+1(A) = ℶτn(A)

τ(A) =
⋃
n<ω

τn(A)

As in Proposition 8.21, τ(A) is a ℶ-fixed point for any A, and trivially |A| <
τ(A). So now consider this recursive definition:

W0 = 0

Wα+1 = τ(Wα)

Wα =
⋃
β<α

Wβ , when α is a limit

The construction is defined for all ordinals. Intuitively, then, W is “an injec-
tion” from the ordinals to ℶ-fixed points. And, exactly as before, VWα

is as
wide as it is tall, for any α.
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Chapter 9

Choice

9.1 Introduction

sth:choice:intro:
sec

In chapters 7 to 8, we developed a theory of cardinals by treating cardinals
as ordinals. That approach depends upon the Axiom of Well-Ordering. It
turns out that Well-Ordering is equivalent to another principle—the Axiom of
Choice—and there has been serious philosophical discussion of its acceptability.
Our question for this chapter are: How is the Axiom used, and can it be
justified?

9.2 The Tarski-Scott Trick

sth:choice:tarskiscott:
sec

In Definition 7.1, we defined cardinals as ordinals. To do this, we assumed the
Axiom of Well-Ordering. We did this, for no other reason than that it is the
“industry standard”.

Before we discuss any of the philosophical issues surrounding Well-Ordering,
then, it is important to be clear that we can depart from the industry standard,
and develop a theory of cardinals without assuming Well-Ordering. We can still
employ the definitions of A ≈ B, A ⪯ B and A ≺ B, as they appeared in ??.
We will just need a new notion of cardinal.

A näıve thought would be to attempt to define A’s cardinality thus:

{x : A ≈ x}.

You might want to compare this with Frege’s definition of #xFx, sketched
at the very end of section 7.5. And, for reasons we gestured at there, this
definition fails. Any singleton set is equinumerous with {∅}. But new singleton
sets are formed at every successor stage of the hierarchy (just consider the
singleton of the previous stage). So {x : A ≈ x} does not exist, since it cannot
have a rank.

To get around this problem, we use a trick due to Tarski and Scott:1

1A reminder: all formulas may have parameters (unless explicitly stated otherwise).
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Definition 9.1 (Tarski-Scott). For any formula φ(x), let [x : φ(x)] be the
set of all x, of least possible rank, such that φ(x) (or ∅, if there are no φs).

We should check that this definition is legitimate. Working in ZF, Theo-
rem 4.13 guarantees that rank(x) exists for every x. Now, if there are any enti-
ties satisfying φ, then we can let α be the least rank such that (∃x ⊆ Vα)φ(x),
i.e., (∀β ∈ α)(∀x ⊆ Vβ)¬φ(x). We can then define [x : φ(x)] by Separation as
{x ∈ Vα+1 : φ(x)}.

Having justified the Tarski-Scott trick, we can now use it to define a notion
of cardinality:

Definition 9.2. The ts-cardinality of A is tsc(A) = [x : A ≈ x].

The definition of a ts-cardinal does not use Well-Ordering. But, even with-
out that Axiom, we can show that ts-cardinals behave rather like cardinals as
defined in Definition 7.1. For example, if we restate Lemma 7.3 and Lemma 8.4
in terms of ts-cardinals, the proofs go through just fine in ZF, without assum-
ing Well-Ordering.

Whilst we are on the topic, it is worth noting that we can also develop a
theory of ordinals using the Tarski-Scott trick. Where ⟨A,<⟩ is a well-ordering,
let tso(A,<) = [⟨X,R⟩ : ⟨A,<⟩ ∼= ⟨X,R⟩]. For more on this treatment of
cardinals and ordinals, see Potter (2004, chs. 9–12).

9.3 Comparability and Hartogs’ Lemma

sth:choice:hartogs:
sec

That’s the plus side. Here’s the minus side. Without Choice, things get messy.
To see why, here is a nice result due to Hartogs (1915):

Lemma 9.3 (in ZF).sth:choice:hartogs:

HartogsLemma

For any set A, there is an ordinal α such that α ⪯̸ A

Proof. If B ⊆ A and R ⊆ B2, then ⟨B,R⟩ ⊆ Vrank(A)+4 by Lemma 6.9. So,
using Separation, consider:

C = {⟨B,R⟩ ∈ Vrank(A)+5 : B ⊆ A and ⟨B,R⟩ is a well-ordering}

Using Replacement and Theorem 3.26, form the set:

α = {ord(B,R) : ⟨B,R⟩ ∈ C}.

By Corollary 3.19, α is an ordinal, since it is a transitive set of ordinals. After
all, if γ ∈ β ∈ α, then β = ord(B,R) for some B ⊆ R, whereupon γ =
ord(Bb, Rb) for some b ∈ B by Lemma 3.10, so that γ ∈ α.

For reductio, suppose there is an injection f : α→ A. Then, where:

B = ran(f)

R = {⟨f(α), f(β)⟩ ∈ A×A : α ∈ β}.

Clearly α = ord(B,R) and ⟨B,R⟩ ∈ C. So α ∈ α, which is a contradiction.
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This entails a deep result:

Theorem 9.4 (in ZF). The following claims are equivalent:

1. sth:choice:hartogs:

equivwo

The Axiom of Well-Ordering

2. sth:choice:hartogs:

equivcompare

Either A ⪯ B or B ⪯ A, for any sets A and B

Proof. (1) ⇒ (2). Fix A and B. Invoking (1), there are well-orderings ⟨A,R⟩
and ⟨B,S⟩. Invoking Theorem 3.26, let f : α → ⟨A,R⟩ and g : β → ⟨B,S⟩ be
isomorphisms. By Proposition 3.22, either α ⊆ β or β ⊆ α. If α ⊆ β, then
g ◦ f−1 : A → B is an injection, and hence A ⪯ B; similarly, if β ⊆ α then
B ⪯ A.

(2) ⇒ (1). Fix A; by Lemma 9.3 there is some ordinal β such that β ⪯̸ A.
Invoking (2), we have A ⪯ β. So there is some injection f : A → β, and we
can use this injection to well-order the elements of A, by defining an order
{⟨a, b⟩ ∈ A×A : f(a) ∈ f(b)}.

As an immediate consequence: if Well-Ordering fails, then some sets are lit-
erally incomparable with regard to their size. So, if Well-Ordering fails, then
transfinite cardinal arithmetic will be messy. For example, we will have to
abandon the idea that if A and B are infinite then A⊔B ≈ A×B ≈M , where
M is the larger of A and B (see Theorem 8.11). The problem is simple: if
we cannot compare the size of A and B, then it is nonsensical to ask which is
larger.

9.4 The Well-Ordering Problem

sth:choice:woproblem:
sec

Evidently rather a lot hangs on whether we accept Well-Ordering. But the
discussion of this principle has tended to focus on an equivalent principle, the
Axiom of Choice. So we will now turn our attention to that (and prove the
equivalence).

In 1883, Cantor expressed his support for the Axiom of Well-Ordering,
calling it “a law of thought which appears to me to be fundamental, rich in
its consequences, and particularly remarkable for its general validity” (cited
in Potter 2004, p. 243). But Cantor ultimately became convinced that the
“Axiom” was in need of proof. So did the mathematical community.

The problem was “solved” by Zermelo in 1904. To explain his solution, we
need some definitions.

Definition 9.5. A function f is a choice function iff f(x) ∈ x for all x ∈
dom(f). We say that f is a choice function for A iff f is a choice function with
dom(f) = A \ {∅}.

Intuitively, for every (non-empty) set x ∈ A, a choice function for A chooses
a particular element, f(x), from x. The Axiom of Choice is then:

Axiom (Choice). Every set has a choice function.
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Zermelo showed that Choice entails well-ordering, and vice versa:

Theorem 9.6 (in ZF).sth:choice:woproblem:

thmwochoice

Well-Ordering and Choice are equivalent.

Proof. Left-to-right. Let A be a set of sets. Then
⋃
A exists by the Axiom of

Union, and so by Well-Ordering there is some < which well-orders
⋃
A. Now

let f(x) = the <-least member of x. This is a choice function for A.
Right-to-left. Fix A. By Choice, there is a choice function, f , for ℘(A)\{∅}.

Using Transfinite Recursion, define a function:

g(0) = f(A)

g(α) =

{
stop! if A = g[α]

f(A \ g[α]) otherwise

The indication to “stop!” is just a shorthand for what would otherwise be a
more long-winded definition. That is, when A = g[α] for the first time, let
g(δ) = A for all δ ≤ α. Now, in the first instance, we can only be sure that
this defines a term (see the remarks after Theorem 4.4); but we will show that
we indeed have a function.

Since f is a choice function, for each α (when defined) we have g(α) =
f(A \ g[α]) ∈ A \ g[α]; i.e., g(α) /∈ g[α]. So if g(α) = g(β) then g(β) /∈ g[α], i.e.,
β /∈ α, and similarly α /∈ β. So α = β, by Trichotomy. So g is injective.

Next, observe that we do stop!, i.e. that there is some (least) ordinal α
such that A = g[α]. For suppose otherwise; then as g is injective we would
have α ≺ ℘(A) \ {∅} for every ordinal α, contradicting Lemma 9.3. Hence also
ran(g) = A.

Assembling these facts, g is a bijection from some ordinal to A. Now g can
be used to well-order A.

So Well-Ordering and Choice stand or fall together. But the question re-
mains: do they stand or fall?

9.5 Countable Choice

sth:choice:countablechoice:
sec

It is easy to prove, without any use of Choice/Well-Ordering, that:

Lemma 9.7 (in Z−). Every finite set has a choice function.

Proof. Let a = {b1, . . . , bn}. Suppose for simplicity that each bi ̸= ∅. So there
are objects c1, . . . , cn such that c1 ∈ b1, . . . , cn ∈ bn. Now by Proposition 2.5,
the set {⟨b1, c1⟩, . . . , ⟨bn, cn⟩} exists; and this is a choice function for a.

But matters get murkier as soon as we consider infinite sets. For example,
consider this “minimal” extension to the above:
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Countable Choice. Every countable set has a choice function.

This is a special case of Choice. And it transpires that this principle was
invoked fairly frequently, without an obvious awareness of its use. Here are two
nice examples.2

Example 9.8. Here is a natural thought: for any setA, either ω ⪯ A, orA ≈ n
for some n ∈ ω. This is one way to state the intuitive idea, that every set is
either finite or infinite. Cantor, and many other mathematicians, made this
claim without proving it. Cautious as we are, we proved this in Theorem 7.7.
But in that proof we were working in ZFC, since we were assuming that any
set A can be well-ordered, and hence that |A| is guaranteed to exist. That is:
we explicitly assumed Choice.

In fact, Dedekind (1888) offered his own proof of this claim, as follows:

Theorem 9.9 (in Z− +Countable Choice). For any A, either ω ⪯ A or
A ≈ n for some n ∈ ω.

Proof. Suppose A ̸≈ n for all n ∈ ω. Then in particular for each n < ω there is
subset An ⊆ A with exactly 2n elements. Using this sequence A0, A1, A2, . . .,
we define for each n:

Bn = An \
⋃
i<n

Ai.

Now note the following∣∣∣∣∣⋃
i<n

An

∣∣∣∣∣ ≤ |A0|+ |A1|+ . . .+ |An−1|

= 1 + 2 + . . .+ 2n−1

= 2n − 1

< 2n = |An|

Hence each Bn has at least one member, cn. Moreover, the Bns are pairwise
disjoint; so if cn = cm then n = m. But every cn ∈ A. So the function
f(n) = cn is an injection ω → A.

Dedekind did not flag that he had used Countable Choice. But, did you spot
its use? Look again. (Really: look again.)

The proof used Countable Choice twice. We used it once, to obtain our
sequence of sets A0, A1, A2, . . . We then used it again to select our elements
cn from each Bn. Moreover, this use of Choice is ineliminable. Cohen (1966,
p. 138) proved that the result fails if we have no version of Choice. That is: it
is consistent with ZF that there are sets which are incomparable with ω.

2Due to Potter (2004, §9.4) and Luca Incurvati.
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Example 9.10. In 1878, Cantor stated that a countable union of countable
sets is countable. He did not present a proof, perhaps indicating that he took
the proof to be obvious. Now, cautious as we are, we proved a more general
version of this result in Proposition 8.12. But our proof explicitly assumed
Choice. And even the proof of the less general result requires Countable Choice.

Theorem 9.11 (in Z− +Countable Choice). If An is countable for each
n ∈ ω, then

⋃
n<ω An is countable.

Proof. Without loss of generality, suppose that each An ̸= ∅. So for each
n ∈ ω there is a surjection fn : ω → An. Define f : ω × ω →

⋃
n<ω An by

f(m,n) = fn(m). The result follows because ω × ω is countable (??) and f is
a surjection.

Did you spot the use of the Countable Choice? It is used to choose our sequence
of functions f0, f1, f2, . . .

3 And again, the result fails in the absence of any
Choice principle. Specifically, Feferman and Levy (1963) proved that it is
consistent with ZF that a countable union of countable sets has cardinality ℶ1.
But here is a much funnier statement of the point, from Russell:

This is illustrated by the millionaire who bought a pair of socks
whenever he bought a pair of boots, and never at any other time,
and who had such a passion for buying both that at last he had
ℵ0 pairs of boots and ℵ0 pairs of socks. . . Among boots we can
distinguish right and left, and therefore we can make a selection of
one out of each pair, namely, we can choose all the right boots or all
the left boots; but with socks no such principle of selection suggests
itself, and we cannot be sure, unless we assume the multiplicative
axiom [i.e., in effect Choice], that there is any class consisting of
one sock out of each pair. (Russell, 1919, p. 126)

In short, some form of Choice is needed to prove the following: If you have
countably many pairs of socks, then you have (only) countably many socks.
And in fact, without Countable Choice (or something equivalent), a countable
union of countable sets can fail to be countable.

The moral is that Countable Choice was used repeatedly, without much
awareness of its users. The philosophical question is: How could we justify
Countable Choice?

An attempt at an intuitive justification might invoke an appeal to a super-
task. Suppose we make the first choice in 1/2 a minute, our second choice in
1/4 a minute, . . . , our n-th choice in 1/2n a minute, . . . Then within 1 minute,
we will have made an ω-sequence of choices, and defined a choice function.

3A similar use of Choice occurred in Proposition 8.12, when we gave the instruction “For
each β ∈ a, fix an injection fβ”.
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But what, really, could such a thought-experiment tell us? For a start, it
relies upon taking this idea of “choosing” rather literally. For another, it seems
to bind up mathematics in metaphysical possibility.

More important: it is not going to give us any justification for Choice tout
court, rather than mere Countable Choice. For if we need every set to have a
choice function, then we’ll need to be able to perform a “supertask of arbitrary
ordinal length.” Bluntly, that idea is laughable.

9.6 Intrinsic Considerations about Choice

sth:choice:justifications:
sec

The broader question, then, is whether Well-Ordering, or Choice, or indeed the
comparability of all sets as regards their size—it doesn’t matter which—can be
justified.

Here is an attempted intrinsic justification. Back in section 2.1, we intro-
duced several principles about the hierarchy. One of these is worth restating:

Stages-accumulate. For any stage S, and for any sets which were formed
before stage S: a set is formed at stage S whose members are exactly
those sets. Nothing else is formed at stage S.

In fact, many authors have suggested that the Axiom of Choice can be justified
via (something like) this principle. We will briefly provide a gloss on that
approach.

We will start with a simple little result, which offers yet another equivalent
for Choice:

Theorem 9.12 (in ZF). sth:choice:justifications:

choiceset

Choice is equivalent to the following principle. If
the elements of A are disjoint and non-empty, then there is some C such that
C ∩ x is a singleton for every x ∈ A. (We call such a C a choice set for A.)

The proof of this result is straightforward, and we leave it as an exercise
for the reader.

Problem 9.1. Prove Theorem 9.12. If you struggle, you can find a proof in
(Potter, 2004, pp. 242–3).

The essential point is that a choice set for A is just the range of a choice
function for A. So, to justify Choice, we can simply try to justify its equivalent
formulation, in terms of the existence of choice sets. And we will now try to
do exactly that.

Let A’s elements be disjoint and non-empty. By Stages-are-key (see sec-
tion 2.1), A is formed at some stage S. Note that all the elements of

⋃
A are

available before stage S. Now, by Stages-accumulate, for any sets which were
formed before S, a set is formed whose members are exactly those sets. Other-
wise put: every possible collections of earlier-available sets will exist at S. But
it is certainly possible to select objects which could be formed into a choice set

78 set-theory rev: c9d2ed6 (2023-09-14) by OLP / CC–BY

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/


for A; that is just some very specific subset of
⋃
A. So: some such choice set

exists, as required.
Well, that’s a very quick attempt to offer a justification of Choice on intrin-

sic grounds. But, to pursue this idea further, you should read Potter’s (2004,
§14.8) neat development of it.

9.7 The Banach-Tarski Paradox

sth:choice:banach:
sec

We might also attempt to justify Choice, as Boolos attempted to justify Re-
placement, by appealing to extrinsic considerations (see section 5.3). After
all, adopting Choice has many desirable consequences: the ability to compare
every cardinal; the ability to well-order every set; the ability to treat cardinals
as a particular kind of ordinal; etc.

Sometimes, however, it is claimed that Choice has undesirable consequences.
Mostly, this is due to a result by Banach and Tarski (1924).

Theorem 9.13 (Banach-Tarski Paradox (in ZFC)). Any ball can be de-
composed into finitely many pieces, which can be reassembled (by rotation and
transportation) to form two copies of that ball.

At first glance, this is a bit amazing. Clearly the two balls have twice the
volume of the original ball. But rigid motions—rotation and transportation—
do not change volume. So it looks as if Banach-Tarski allows us to magick new
matter into existence.

It gets worse.4 Similar reasoning shows that a pea can be cut into finitely
many pieces, which can then be reassembled (by rotation and transportation)
to form an entity the shape and size of Big Ben.

None of this, however, holds in ZF on its own.5 So we face a decision:
reject Choice, or learn to live with the “paradox”.

We’re going to suggest that we should learn to live with the “paradox”.
Indeed, we don’t think it’s much of a paradox at all. In particular, we don’t
see why it is any more or less paradoxical than any of the following results:6

1. There are as many points in the interval (0, 1) as in R.
Proof : consider tan(π(r − 1/2))).

2. There are as many points in a line as in a square.
See ?? and ??.

3. There are space-filling curves.
See ?? and ??.

4See Tomkowicz and Wagon (2016, Theorem 3.12).
5Though Banach-Tarski can be proved with principles which are strictly weaker than

Choice; see Tomkowicz and Wagon (2016, 303).
6Potter (2004, 276–7), Weston (2003, 16), Tomkowicz and Wagon (2016, 31, 308–9),

make similar points, using other examples.
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None of these three results require Choice. Indeed, we now just regard them
as surprising, lovely, bits of mathematics. Maybe we should adopt the same
attitude to the Banach-Tarski Paradox.

To be sure, a technical observation is required here; but it only requires
keeping a level head. Rigid motions preserve volume. Consequently, the five7

pieces into which the ball is decomposed cannot all be measurable. Roughly
put, then, it makes no sense to assign a volume to these individual pieces. You
should think of these as unpicturable, “infinite scatterings” of points. Now,
maybe it is “weird” to conceive of such “infinitely scattered” sets. But their
existence seems to fall out from the injunction, embodied in Stages-accumulate,
that you should form all possible collections of earlier-available sets.

If none of that convinces, here is a final (extrinsic) argument in favour of
embracing the Banach-Tarski Paradox. It immediately entails the best math
joke of all time:

Question. What’s an anagram of “Banach-Tarski”?

Answer. “Banach-Tarski Banach-Tarski”.

9.8 Appendix: Vitali’s Paradox

sth:choice:vitali:
sec

To get a real sense of whether the Banach-Tarski construction is acceptable or
not, we should examine its proof. Unfortunately, that would require much more
algebra than we can present here. However, we can offer some quick remarks
which might shed some insight on the proof of Banach-Tarski,8 by focussing
on the following result:

Theorem 9.14 (Vitali’s Paradox (in ZFC)). sth:choice:vitali:

vitaliparadox

Any circle can be decom-
posed into countably many pieces, which can be reassembled (by rotation and
transportation) to form two copies of that circle.

Vitali’s Paradox is much easier to prove than the Banach–Tarski Paradox.
We have called it “Vitali’s Paradox”, since it follows from Vitali’s 1905 con-
struction of an unmeasurable set. But the set-theoretic aspects of the proof of
Vitali’s Paradox and the Banach-Tarski Paradox are very similar. The essen-
tial difference between the results is just that Banach-Tarski considers a finite
decomposition, whereas Vitali’s Paradox considers a countably infinite decom-
position. As Weston (2003) puts it, Vitali’s Paradox “is certainly not nearly
as striking as the Banach–Tarski paradox, but it does illustrate that geometric
paradoxes can happen even in ‘simple’ situations.”

Vitali’s Paradox concerns a two-dimensional figure, a circle. So we will work
on the plane, R2. Let R be the set of (clockwise) rotations of points around

7We stated the Paradox in terms of “finitely many pieces”. In fact, Robinson (1947)
proved that the decomposition can be achieved with five pieces (but no fewer). For a proof,
see Tomkowicz and Wagon (2016, pp. 66–7).

8For a much fuller treatment, see Weston (2003) or Tomkowicz and Wagon (2016).
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the origin by rational radian values between [0, 2π). Here are some algebraic
facts about R (if you don’t understand the statement of the result, the proof
will make its meaning clear):

Lemma 9.15.sth:choice:vitali:

rotationsgroupabelian

R forms an abelian group under composition of functions.

Proof. Writing 0R for the rotation by 0 radians, this is an identity element for
R, since ρ ◦ 0R = 0R ◦ ρ = ρ for any ρ ∈ R.

Every element has an inverse. Where ρ ∈ R rotates by r radians, ρ−1 ∈ R
rotates by 2π − r radians, so that ρ ◦ ρ−1 = 0R.

Composition is associative: (τ ◦ σ) ◦ ρ = τ ◦ (σ ◦ ρ) for any ρ, σ, τ ∈ R
Composition is commutative: σ ◦ ρ = ρ ◦ σ for any ρ, σ ∈ R.

In fact, we can split our group R in half, and then use either half to recover
the whole group:

Lemma 9.16.sth:choice:vitali:

disjointgroup

There is a partition of R into two disjoint sets, R1 and R2,
both of which are a basis for R.

Proof. Let R1 consist of the rotations by rational radian values in [0, π); let
R2 = R \ R1. By elementary algebra, {ρ ◦ ρ : ρ ∈ R1} = R. A similar result
can be obtained for R2.

We will use this fact about groups to establish Theorem 9.14. Let S be
the unit circle, i.e., the set of points exactly 1 unit away from the origin of
the plane, i.e., {⟨r, s⟩ ∈ R2 :

√
r2 + s2 = 1}. We will split S into parts by

considering the following relation on S:

r ∼ s iff (∃ρ ∈ R)ρ(r) = s.

That is, the points of S are linked by this relation iff you can get from one to
the other by a rational-valued rotation about the origin. Unsurprisingly:

Lemma 9.17. ∼ is an equivalence relation.

Proof. Trivial, using Lemma 9.15.

We now invoke Choice to obtain a set, C, containing exactly one member
from each equivalence class of S under ∼. That is, we consider a choice function
f on the set of equivalence classes,9

E = {[r]∼ : r ∈ S},

and let C = ran(f). For each rotation ρ ∈ R, the set ρ[C] consists of the points
obtained by applying the rotation ρ to each point in C. These next two results
show that these sets cover the circle completely and without overlap:

9Since R is enumerable, each element of E is enumerable. Since S is non-enumerable, it
follows from Lemma 9.18 and Proposition 8.12 that E is non-enumerable. So this is a use of
uncountable Choice.
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Lemma 9.18. sth:choice:vitali:

vitalicover

S =
⋃

ρ∈R ρ[C].

Proof. Fix s ∈ S; there is some r ∈ C such that r ∈ [s]∼, i.e., r ∼ s, i.e.,
ρ(r) = s for some ρ ∈ R.

Lemma 9.19. sth:choice:vitali:

vitalinooverlap

If ρ1 ̸= ρ2 then ρ1[C] ∩ ρ2[C] = ∅.

Proof. Suppose s ∈ ρ1[C] ∩ ρ2[C]. So s = ρ1(r1) = ρ2(r2) for some r1, r2 ∈ C.
Hence ρ−1

2 (ρ1(r1)) = r2, and ρ
−1
2 ◦ ρ1 ∈ R, so r1 ∼ r2. So r1 = r2, as C selects

exactly one member from each equivalence class under ∼. So s = ρ1(r1) =
ρ2(r1), and hence ρ1 = ρ2.

We now apply our earlier algebraic facts to our circle:

Lemma 9.20. sth:choice:vitali:

pseudobanachtarski

There is a partition of S into two disjoint sets, D1 and D2,
such that D1 can be partitioned into countably many sets which can be rotated
to form a copy of S (and similarly for D2).

Proof. Using R1 and R2 from Lemma 9.16, let:

D1 =
⋃

ρ∈R1

ρ[C] D2 =
⋃

ρ∈R2

ρ[C]

This is a partition of S, by Lemma 9.18, and D1 and D2 are disjoint by
Lemma 9.19. By construction, D1 can be partitioned into countably many
sets, ρ[C] for each ρ ∈ R1. And these can be rotated to form a copy of S, since
S =

⋃
ρ∈R ρ[C] =

⋃
ρ∈R1

(ρ ◦ ρ)[C] by Lemma 9.16 and Lemma 9.18. The same
reasoning applies to D2.

This immediately entails Vitali’s Paradox. For we can generate two copies
of S from S, just by splitting it up into countably many pieces (the various
ρ[C]’s) and then rigidly moving them (simply rotate each piece of D1, and first
transport and then rotate each piece of D2).

Let’s recap the proof-strategy. We started with some algebraic facts about
the group of rotations on the plane. We used this group to partition S into
equivalence classes. We then arrived at a “paradox”, by using Choice to select
elements from each class.

We use exactly the same strategy to prove Banach–Tarski. The main dif-
ference is that the algebraic facts used to prove Banach–Tarski are significantly
more complicated than those used to prove Vitali’s Paradox. But those alge-
braic facts have nothing to do with Choice. We will summarise them quickly.

To prove Banach–Tarski, we start by establishing an analogue of Lemma 9.16:
any free group can be split into four pieces, which intuitively we can “move
around” to recover two copies of the whole group.10 We then show that we can

10The fact that we can use four pieces is due to Robinson (1947). For a recent proof, see
Tomkowicz and Wagon (2016, Theorem 5.2). We follow Weston (2003, p. 3) in describing
this as “moving” the pieces of the group.
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use two particular rotations around the origin of R3 to generate a free group of
rotations, F .11 (No Choice yet.) We now regard points on the surface of the
sphere as “similar” iff one can be obtained from the other by a rotation in F .
We then use Choice to select exactly one point from each equivalence class
of “similar” points. Applying our division of F to the surface of the sphere,
as in Lemma 9.20, we split that surface into four pieces, which we can “move
around” to obtain two copies of the surface of the sphere. And this establishes
(Hausdorff, 1914):

Theorem 9.21 (Hausdorff’s Paradox (in ZFC)). The surface of any sphere
can be decomposed into finitely many pieces, which can be reassembled (by ro-
tation and transportation) to form two disjoint copies of that sphere.

A couple of further algebraic tricks are needed to obtain the full Banach-
Tarski Theorem (which concerns not just the sphere’s surface, but its interior
too). Frankly, however, this is just icing on the algebraic cake. Hence Weston
writes:

[. . . ] the result on free groups is the key step in the proof of the
Banach-Tarski paradox. From this point of view, the Banach-Tarski
paradox is not a statement about R3 so much as it is a statement
about the complexity of the group [of translations and rotations in
R3]. (Weston, 2003, p. 16)

That is: whether we can offer a finite decomposition (as in Banach–Tarski) or a
countably infinite decomposition (as in Vitali’s Paradox) comes down to certain
group-theoretic facts about working in two-dimension or three-dimensions.

Admittedly, this last observation slightly spoils the joke at the end of sec-
tion 9.7. Since it is two dimensional, “Banach-Tarski” must be divided into
a countable infinity of pieces, if one wants to rearrange those pieces to form
“Banach-Tarski Banach-Tarski”. To repair the joke, one must write in three
dimensions. We leave this as an exercise for the reader.

One final comment. In section 9.7, we mentioned that the “pieces” of the
sphere one obtains cannot be measurable, but must be unpicturable “infinite
scatterings”. The same is true of our use of Choice in obtaining Lemma 9.20.
And this is all worth explaining.

Again, we must sketch some background (but this is just a sketch; you may
want to consult a textbook entry on measure). To define a measure for a set
X is to assign a value µ(E) ∈ R for each E in some “σ-algebra” on X. Details
here are not essential, except that the function µ must obey the principle of
countable additivity: the measure of a countable union of disjoint sets is the
sum of their individual measures, i.e., µ(

⋃
n<ωXn) =

∑
n<ω µ(Xn) whenever

the Xns are disjoint. To say that a set is “unmeasurable” is to say that no
measure can be suitably assigned. Now, using our R from before:

11See Tomkowicz and Wagon (2016, Theorem 2.1).
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Corollary 9.22 (Vitali). Let µ be a measure such that µ(S) = 1, and such
that µ(X) = µ(Y ) if X and Y are congruent. Then ρ[C] is unmeasurable for
all ρ ∈ R.

Proof. For reductio, suppose otherwise. So let µ(σ[C]) = r for some σ ∈ R
and some r ∈ R. For any ρ ∈ C, ρ[C] and σ[C] are congruent, and hence
µ(ρ[C]) = r for any ρ ∈ C. By Lemma 9.18 and Lemma 9.19, S =

⋃
ρ∈R ρ[C]

is a countable union of pairwise disjoint sets. So countable additivity dictates
that µ(S) = 1 is the sum of the measures of each ρ[C], i.e.,

1 = µ(S) =
∑
ρ∈R

µ(ρ[C]) =
∑
ρ∈R

r

But if r = 0 then
∑

ρ∈R r = 0, and if r > 0 then
∑

ρ∈R r = ∞.
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