replacement.1 The Strength of Replacement

We begin with a simple observation about the strength of Replacement: unless we go beyond Z, we cannot prove the existence of any von Neumann ordinal greater than or equal to $\omega + \omega$.

Here is a sketch of why. Working in ZF, consider the set $V_{\omega+\omega}$. This set acts as the domain for a model for Z. To see this, we introduce some notation for the relativization of a formula:

Definition replacement.1. For any set M, and any formula φ, let φ^M be the formula which results by restricting all of φ's quantifiers to M. That is, replace “$\exists x$” with “($\exists x \in M$)”, and replace “$\forall x$” with “($\forall x \in M$)”.

It can be shown that, for every axiom φ of Z, we have that $\text{ZF} \vdash \varphi^{V_{\omega+\omega}}$. But $\omega + \omega$ is not in $V_{\omega+\omega}$, by ???. So Z is consistent with the non-existence of $\omega + \omega$.

This is why we said, in ???, that ?? cannot be proved without Replacement. For it is easy, within Z, to define an explicit well-ordering which intuitively should have order-type $\omega + \omega$. Indeed, we gave an informal example of this in ???, when we presented the ordering on the natural numbers given by:

$$n \prec m \text{ iff either } n < m \text{ and } m - n \text{ is even,}$$
$$\quad \text{ or } n \text{ is even and } m \text{ is odd.}$$

But if $\omega + \omega$ does not exist, this well-ordering is not isomorphic to any ordinal. So Z does not prove ???.

Flipping things around: Replacement allows us to prove the existence of $\omega + \omega$, and hence must allow us to prove the existence of $V_{\omega+\omega}$. And not just that. For any well-ordering we can define, ?? tells us that there is some α isomorphic with that well-ordering, and hence that V_{α} exists. In a straightforward way, then, Replacement guarantees that the hierarchy of sets must be very tall.

Over the next few sections, and then again in ???, we'll get a better sense of better just how tall Replacement forces the hierarchy to be. The simple point, for now, is that Replacement really does stand in need of justification!

Photo Credits

Bibliography