In this section, we will prove Reflection within \textbf{ZF}. We will also prove a sense in which Reflection is equivalent to Replacement. And we will prove an interesting consequence of all this, concerning the strength of Reflection/Replacement.

Warning: this is easily the most advanced bit of mathematics in this textbook.

We’ll start with a lemma which, for brevity, employs the notational device of overlining to deal with sequences of variables or objects. So: “$\overline{a_k}$” abbreviates “a_{k_1}, \ldots, a_{k_n}”, where n is determined by context.

Lemma replacement.1. For each $1 \leq i \leq k$, let $\varphi_i(\overline{a_i}, x)$ be a formula. Then for each α there is some $\beta > \alpha$ such that, for any $\overline{a_1}, \ldots, \overline{a_k} \in V_\alpha$ and each $1 \leq i \leq k$:

$$\exists x \varphi_i(\overline{a_i}, x) \rightarrow (\exists x \in V_\beta) \varphi_i(\overline{a_i}, x)$$

Proof. We define a term μ as follows: $\mu(\overline{a_1}, \ldots, \overline{a_k})$ is the least stage, V_β, which satisfies all of the following conditionals, for $1 \leq i \leq k$:

$$\exists x \varphi_i(\overline{a_i}, x) \rightarrow (\exists x \in V_\beta) \varphi_i(\overline{a_i}, x)$$

It is easy to confirm that $\mu(\overline{a_1}, \ldots, \overline{a_k})$ exists for all $\overline{a_1}, \ldots, \overline{a_k}$. Now, using Replacement and our recursion theorem, define:

$$S_0 = V_{\alpha+1}$$

$$S_{n+1} = S_n \cup \{ \mu(\overline{a_1}, \ldots, \overline{a_k}) : \overline{a_1}, \ldots, \overline{a_k} \in S_n \}$$

$$S = \bigcup_{m < \omega} S_m.$$

Each S_n, and hence S itself, is a stage after V_α. Now fix $\overline{a_1}, \ldots, \overline{a_k} \in S$; so there is some $n < \omega$ such that $\overline{a_1}, \ldots, \overline{a_k} \in S_n$. Fix some $1 \leq i \leq k$, and suppose that $\exists x \varphi_i(\overline{a_i}, x)$. So $(\exists x \in \mu(\overline{a_1}, \ldots, \overline{a_k})) \varphi_i(\overline{a_i}, x)$ by construction, so $(\exists x \in S) \varphi_i(\overline{a_i}, x)$ and hence $(\exists x \in S) \varphi_i(\overline{a_i}, x)$. So S is our V_β. \qed

We can now prove ?? quite straightforwardly:

Proof. Fix α. Without loss of generality, we can assume φ’s only connectives are \exists, \neg and \land (since these are expressively adequate). Let ψ_1, \ldots, ψ_k enumerate each of φ’s subformulas according to complexity, so that $\psi_k = \varphi$. By **Lemma replacement.1**, there is a $\beta > \alpha$ such that, for any $\overline{a_i} \in V_\beta$ and each $1 \leq i \leq k$:

$$\exists x \psi_i(\overline{a_i}, x) \rightarrow (\exists x \in V_\beta) \psi_i(\overline{a_i}, x)$$

(*)

By induction on complexity of ψ_i, we will show that $\psi_i(\overline{a_i}) \leftrightarrow \psi_i^V(\overline{a_i})$, for any $\overline{a_i} \in V_\beta$. If ψ_i is atomic, this is trivial. The biconditional also establishes that, when ψ_i is a negation or conjunction of subformulas satisfying this...
property, \(\psi_i \) itself satisfies this property. So the only interesting case concerns quantification. Fix \(\pi_i \in V_\beta \); then:

\[
(\exists x \psi_i(\pi_i, x))_{V^\beta} \iff (\exists x \in V_\beta)\psi_i(\pi_i, x)
\]

by hypothesis

\[
\iff \exists x \psi_i(\pi_i, x)
\]

by \((*)\)

This completes the induction; the result follows as \(\psi_k = \phi \).

We have proved Reflection in \(\text{ZF} \). Our proof essentially followed Montague (1961). We now want to prove in \(\text{Z} \) that Reflection entails Replacement. The proof follows Lévy (1960), but with a simplification.

Since we are working in \(\text{Z} \), we cannot present Reflection in exactly the form given above. After all, we formulated Reflection using the “\(V_\alpha \)” notation, and that cannot be defined in \(\text{Z} \) (see ??). So instead we will offer an apparently weaker formulation of Replacement, as follows:

Weak-Reflection. For any formula \(\varphi \), there is a transitive set \(S \) such that 0, 1, and any parameters to \(\varphi \) are elements of \(S \), and \((\forall \pi \in S)(\varphi \leftrightarrow \varphi^S)\).

To use this to prove Replacement, we will first follow Lévy (1960, first part of Theorem 2) and show that we can “reflect” two formulas at once:

Lemma replacement.2 (in \(\text{Z} + \text{Weak-Reflection} \).) For any formulas \(\psi, \chi \), there is a transitive set \(S \) such that 0 and 1 (and any parameters to the formulas) are elements of \(S \), and \((\forall \pi \in S)((\psi \leftrightarrow \psi^S) \land (\chi \leftrightarrow \chi^S))\).

Proof. Let \(\varphi \) be the formula \((z = 0 \land \psi) \lor (z = 1 \land \chi)\).

Here we use an abbreviation; we should spell out “\(z = 0 \)” as “\(\forall t t \notin z \)” and “\(z = 1 \)” as “\(\forall s(s \in z \leftrightarrow \exists t t \notin s) \)”.

But since 0, 1 \(\in S \) and \(S \) is transitive, these formulas are absolute for \(S \); that is, they will apply to the same object whether we restrict their quantifiers to \(S \).\footnote{More formally, letting \(\xi \) be either of these formulas, \(\xi(z) \leftrightarrow \xi^S(z) \).}

By Weak-Reflection, we have some appropriate \(S \) such that:

\[
(\forall z, \pi \in S)(\varphi \leftrightarrow \varphi^S)
\]

i.e. \((\forall z, \pi \in S)(((z = 0 \land \psi) \lor (z = 1 \land \chi)) \leftrightarrow ((z = 0 \land \psi^S) \lor (z = 1 \land \chi^S)))\)

i.e. \((\forall z, \pi \in S)(((z = 0 \land \psi) \lor (z = 1 \land \chi)) \leftrightarrow ((z = 0 \land \psi^S) \lor (z = 1 \land \chi^S)))\)
We can now obtain Replacement, just by following and simplifying Lévy (1960, Theorem 6):

Theorem replacement.3 (in Z + Weak-Reflection). For any formula $\varphi(v, w)$, and any A, if $(\forall x \in A) \exists! y \varphi(x, y)$, then \{ $y : (\exists x \in A) \varphi(x, y)$ \} exists.

Proof. Fix A such that $(\forall x \in A) \exists! y \varphi(x, y)$, and define formulas:

\[
\psi \text{ is } (\varphi(x, z) \wedge A = A) \\
\chi \text{ is } \exists y \varphi(x, y)
\]

Using Lemma replacement.2, since A is a parameter to ψ, there is a transitive S such that $0, 1, A \in S$ (along with any other parameters), and such that:

\[
(\forall x, z \in S)(\psi \leftrightarrow S_\psi(x, z)) \wedge (\chi \leftrightarrow S_\chi(x, y))
\]

So in particular:

\[
(\forall x, z \in S)(\varphi(x, z) \leftrightarrow S_\psi(x, z)) \\
(\forall x \in S)(\exists y \varphi(x, y) \leftrightarrow S_\chi(x, y))
\]

Combining these, and observing that $A \subseteq S$ since $A \in S$ and S is transitive:

\[
(\forall x \in A) (\exists y \varphi(x, y) \leftrightarrow (\exists y \in S) \varphi(x, y))
\]

Now $(\forall x \in A) (\exists! y \in S) \varphi(x, y)$, because $(\forall x \in A) \exists! y \varphi(x, y)$. Now Separation yields \{ $y \in S' : (\exists x \in A) \varphi(x, y)$ \} = \{ $y : (\exists x \in A) \varphi(x, y)$ \}. \qed

Photo Credits

Bibliography
