replacement.1 Appendix: Finite axiomatizability

We close this chapter by extracting some results from Replacement. The first result is due to Montague (1961); note that it is not a proof within ZF, but a proof about ZF:

Theorem replacement.1. ZF is not finitely axiomatizable. More generally: if T is finite and T ⊨ ZF, then T is inconsistent.

(Here, we tacitly restrict ourselves to first-order sentences whose only non-logical primitive is ∈, and we write T ⊨ ZF to indicate that T ⊨ φ for all φ ∈ ZF.)

Proof. Fix finite T such that T ⊨ ZF. So, T proves Reflection, i.e.??. Since T is finite, we can rewrite it as a single conjunction, θ. Reflecting with this formula, T ⊨ ∃β(θ ↔ θVβ). Since trivially T ⊨ φ, we find that T ⊨ ∃β θ Vβ.

Now, let ψ(X) abbreviate:

\[\theta^X \land X \text{ is transitive} \land (\forall Y \in X)(Y \text{ is transitive} \rightarrow \neg \theta^Y) \]

roughly this says: X is a transitive model of θ, and ∈-minimal in this regard. Now, recalling that T ⊨ ∃β θVβ, by basic facts about ranks within ZF and hence within T, we have:

\[T \vdash \exists M \psi(M). \] (*)

Using the first conjunct of ψ(X), whenever T ⊨ σ, we have that T ⊨ ∀X(ψ(X) → σX). So, by (*):

\[T \vdash \forall X(\psi(X) \rightarrow (\exists N \psi(N))^X) \]

Using this, and (*) again:

\[T \vdash \exists M(\psi(M) \land (\exists N \psi(N))^M) \]

In particular, then:

\[T \vdash \exists M(\psi(M) \land (\exists N \in M)((N \text{ is transitive})^N \land (\theta^N)^M)) \]

So, by elementary reasoning concerning transitivity:

\[T \vdash \exists M(\psi(M) \land (\exists N \in M)(N \text{ is transitive} \land \theta^N)) \]

So that T is inconsistent.\(^1\)

\[\Box \]

\(^1\)This “elementary reasoning” involves proving certain “absoluteness facts” for transitive sets.

\textit{finiteaxiomatizability rev: 788b9aa (2022-03-22) by OLP / CC–BY}
Proposition replacement.2. Let T extend Z with finitely many new axioms. If $T \vdash ZF$, then T is inconsistent. (Here we use the same tacit restrictions as for Theorem replacement.1.)

Proof. Use θ for the conjunction of all of T’s axioms except for the (infinitely many) instances of Separation. Defining ψ from θ as in Theorem replacement.1, we can show that $T \vdash \exists M \psi(M)$.

As in Theorem replacement.1, we can establish the schema that, whenever $T \vdash \sigma$, we have that $T \vdash \forall X(\psi(X) \rightarrow \sigma^X)$. We then finish our proof, exactly as in Theorem replacement.1.

However, establishing the schema involves a little more work than in Theorem replacement.1. After all, the Separation-instances are in T, but they are not conjuncts of θ. However, we can overcome this obstacle by proving that $T \vdash \forall X(X \text{ is transitive } \rightarrow \sigma^X)$, for every Separation-instance σ. We leave this to the reader.

Problem replacement.1. Show that, for every Separation-instance σ, we have: $Z \vdash \forall X(X \text{ is transitive } \rightarrow \sigma^X)$. (We used this schema in Proposition replacement.2.)

Problem replacement.2. Show that, for every $\varphi \in Z$, we have $ZF \vdash \varphi^{V_{\omega+\omega}}$.

Problem replacement.3. Confirm the remaining schematic results invoked in the proofs of Theorem replacement.1 and Proposition replacement.2.

As remarked in ??, this shows that Replacement is strictly stronger than ??, Or, slightly more strictly: if $Z + \text{"every well-ordering is isomorphic to a unique ordinal"}$ is consistent, then it fails to prove some Replacement-instance.

Photo Credits

Bibliography
