We start by considering an *extrinsic* attempt to justify Replacement. Boolos suggests one, as follows.

[...] the reason for adopting the axioms of replacement is quite simple: they have many desirable consequences and (apparently) no undesirable ones. In addition to theorems about the iterative conception, the consequences include a satisfactory if not ideal theory of infinite numbers, and a highly desirable result that justifies inductive definitions on well-founded relations. (Boolos, 1971, 229)

The gist of Boolos’s idea is that we should justify Replacement by its fruits. And the specific fruits he mentions are the things we have discussed in the past few chapters. Replacement allowed us to prove that the von Neumann ordinals were excellent surrogates for the idea of a well-ordering type (this is our “satisfactory if not ideal theory of infinite numbers”). Replacement also allowed us to define the V_αs, establish the notion of rank, and prove \in-Induction (this amounts to our “theorems about the iterative conception”). Finally, Replacement allows us to prove the Transfinite Recursion Theorem (this is the “inductive definitions on well-founded relations”).

These are, indeed, desirable consequences. But do these desirable consequences suffice to justify Replacement? No. Or at least, not straightforwardly.

Here is a simple problem. Whilst we have stated some desirable consequences of Replacement, we could have obtained many of them via other means. This is not as well known as it ought to be, though, so we should pause to explain the situation.

There is a simple theory of sets, Level Theory, or LT for short. LT’s axioms are just Extensionality, Separation, and the claim that every set is a subset of some level, where “level” is cunningly defined so that the levels behave like our friends, the V_αs. So ZF proves LT; but LT is much weaker than ZF. In fact, LT does not give you Pairs, Powersets, Infinity, or Replacement. Let Zr be the result of adding Infinity and Powersets to LT; this delivers Pairs too, so, Zr is at least as strong as Z. But, in fact, Zr is strictly stronger than Z, since it adds the claim that every set has a rank (hence my suggestion that we call it Zr). Indeed, Zr delivers: a perfectly satisfactory theory of ordinals; results which stratify the hierarchy into well-ordered stages; a proof of \in-Induction; and a version of Transfinite Recursion.

In short: although Boolos didn’t know this, all of the desirable consequences which he mentions could have been arrived at without Replacement; he simply needed to use Zr rather than Z.

1The first versions of LT are offered by Montague (1965) and Scott (1974); this was simplified, and given a book-length treatment, by Potter (2004); and Button (forthcoming) has recently simplified LT further.
(Given all of this, why did we follow the conventional route, of teaching you ZF, rather than LT and Zr? There are two reasons. First: for purely historical reasons, starting with LT is rather nonstandard; we wanted to equip you to be able to read more standard discussions of set theory. Second: when you are ready to appreciate LT and Zr, you can simply read Potter 2004 and Button forthcoming.)

Of course, since Zr is strictly weaker than ZF, there are results which ZF proves which Zr leaves open. So one could try to justify Replacement on extrinsic grounds by pointing to one of these results. But, once you know how to use Zr, it is quite hard to find many examples of things that are (a) settled by Replacement but not otherwise, and (b) are intuitively true. (For more on this, see Potter 2004, §13.2.)

The bottom line is this. To provide a compelling extrinsic justification for Replacement, one would need to find a result which cannot be achieved without Replacement. And that’s not an easy enterprise.

Let’s consider a further problem which arises for any attempt to offer a purely extrinsic justification for Replacement. (This problem is perhaps more fundamental than the first.) Boolos does not just point out that Replacement has many desirable consequences. He also states that Replacement has “(apparently) no undesirable” consequences. But this parathetical caveat, “apparently,” is surely absolutely crucial.

Recall how we ended up here: Naïve Comprehension ran into inconsistency, and we responded to this inconsistency by embracing the cumulative-iterative conception of set. This conception comes equipped with a story which, we hope, assures us of its consistency. But if we cannot justify Replacement from within that story, then we have (as yet) no reason to believe that ZF is consistent. Or rather: we have no reason to believe that ZF is consistent, apart from the (perhaps merely contingent) fact that no one has discovered a contradiction yet. In exactly that sense, Boolos’s comment seems to come down to this: “(apparently) ZF is consistent”. We should demand greater reassurance of consistency than this.

This issue will affect any purely extrinsic attempt to justify Replacement, i.e., any justification which is couched solely in terms of the (known) consequences of ZF. As such, we will want to look for an intrinsic justification of Replacement, i.e., a justification which suggests that the story which we told about sets somehow “already” commits us to Replacement.

Photo Credits

Bibliography

