In ??, we motivated the introduction of ordinals by suggesting that we could treat them as order-types, i.e., canonical proxies for well-orderings. In order for that to work, we would need to prove that every well-ordering is isomorphic to some ordinal. This would allow us to define \(\text{ord}(A, <) \) as the ordinal \(\alpha \) such that \((A, <) \cong \alpha\).

Unfortunately, we cannot prove the desired result only the Axioms we provided introduced so far. (We will see why in ??, but for now the point is: we can’t.) We need a new thought, and here it is:

Axiom (Scheme of Replacement). For any formula \(\varphi(x,y) \), the following is an axiom:

\[
\forall A (\forall x \in A) \exists! y \varphi(x,y) \Rightarrow \exists B \forall y (y \in B \iff (\exists x \in A) \varphi(x,y))
\]

As with Separation, this is a scheme: it yields infinitely many axioms, for each of the infinitely many different \(\varphi \)'s. And it can equally well be (and normally is) written down thus:

For any formula \(\varphi(x,y) \) which does not contain “\(B \)”, the following is an axiom:

\[
\forall A (\forall x \in A) \exists! y \varphi(x,y) \Rightarrow \exists B \forall y (y \in B \iff (\exists x \in A) \varphi(x,y))
\]

On first encounter, however, this is quite a tangled formula. The following quick consequence of Replacement probably gives a clearer expression to the intuitive idea we are working with:

Corollary ordinals.1. For any term \(\tau(x) \), and any set \(A \), this set exists:

\[
\{ \tau(x) : x \in A \} = \{ y : (\exists x \in A) y = \tau(x) \}.
\]

Proof. Since \(\tau \) is a term, \(\forall x \exists! y \tau(x) = y \). A fortiori, \((\forall x \in A) \exists! y \tau(x) = y \). So \(\{ y : (\exists x \in A) \tau(x) = y \} \) exists by Replacement.

This suggests that “Replacement” is a good name for the Axiom: given a set \(A \), you can form a new set, \(\{ \tau(x) : x \in A \} \), by replacing every member of \(A \) with its image under \(\tau \). Indeed, following the notation for the image of a set under a function, we might write \(\tau[A] \) for \(\{ \tau(x) : x \in A \} \).

Crucially, however, \(\tau \) is a term. It need not be (a name for) a function, in the sense of ??, i.e., a certain set of ordered pairs. After all, if \(f \) is a function (in that sense), then the set \(f[A] = \{ f(x) : x \in A \} \) is just a particular subset of \(\text{ran}(f) \), and that is already guaranteed to exist, just using the axioms of \(\mathbb{Z}^- \).

\[1\] Just consider \(\{ y \in \bigcup f : (\exists x \in A) y = f(x) \} \).
Replacement, by contrast, is a powerful addition to our axioms, as we will see in ??.

Photo Credits

Bibliography