In the next few chapters, we will use ordinals a great deal. So it will help if we introduce some simple notions.

Definition ordinals.1. For any ordinal α, its **successor** is $\alpha^+ = \alpha \cup \{\alpha\}$. We say that α is a successor ordinal if $\beta^+ = \alpha$ for some ordinal β. We say that α is a limit ordinal iff α is neither empty nor a successor ordinal.

The following result shows that this is the right notion of successor:

Proposition ordinals.2. For any ordinal α:

1. $\alpha \in \alpha^+$;
2. α^+ is an ordinal;
3. there is no ordinal β such that $\alpha \in \beta \in \alpha^+$.

Proof. Trivially, $\alpha \in \alpha \cup \{\alpha\} = \alpha^+$. Equally, α^+ is a transitive set of ordinals, and hence an ordinal by ???. And it is impossible that $\alpha \in \beta \in \alpha^+$, since then either $\beta \in \alpha$ or $\beta = \alpha$, contradicting ???.

This also licenses a variant of proof by transfinite induction:

Theorem ordinals.3 (Simple Transfinite Induction). Let $\varphi(x)$ be a formula such that:

1. $\varphi(\emptyset)$; and
2. for any ordinal α, if $\varphi(\alpha)$ then $\varphi(\alpha^+)$; and
3. if α is a limit ordinal and $(\forall \beta \in \alpha) \varphi(\beta)$, then $\varphi(\alpha)$.

Then $\forall \alpha \varphi(\alpha)$.

Proof. We prove the contrapositive. So, suppose there is some ordinal which is $\neg \varphi$; let γ be the least such ordinal. Then either $\gamma = \emptyset$, or $\gamma = \alpha^+$ for some α such that $\varphi(\alpha)$; or γ is a limit ordinal and $(\forall \beta \in \gamma) \varphi(\beta)$.

A final bit of notation will prove helpful later on:

Definition ordinals.4. If X is a set of ordinals, then $\text{lsub}(X) = \bigcup_{\alpha \in X} \alpha^+$.

Here, “lsub” stands for “least strict upper bound” \footnote{Some books use “sup(X)” for this. But other books use “sup(X)” for the least non-strict upper bound, i.e., simply $\bigcup X$. If X has a greatest element, α, these notions come apart: the least strict upper bound is α^+, whereas the least non-strict upper bound is just α.} The following result explains this:
Proposition ordinals.5. If X is a set of ordinals, $lsub(X)$ is the least ordinal greater than every ordinal in X.

Proof. Let $Y = \{\alpha^+ : \alpha \in X\}$, so that $lsub(X) = \bigcup Y$. Since ordinals are transitive and every member of an ordinal is an ordinal, $lsub(X)$ is a transitive set of ordinals, and so is an ordinal by ??.

If $\alpha \in X$, then $\alpha^+ \in Y$, so $\alpha^+ \subseteq \bigcup Y = lsub(X)$, and hence $\alpha \in lsub(X)$. So $lsub(X)$ is strictly greater than every ordinal in X.

Conversely, if $\alpha \in lsub(X)$, then $\alpha \in \beta^+ \in Y$ for some $\beta \in X$, so that $\alpha \leq \beta \in X$. So $lsub(X)$ is the least strict upper bound on X. \qed

Photo Credits

Bibliography