Suppose we want to add α and β. We can simply put a copy of β immediately after a copy of α. (We need to take copies, since we know from ?? that either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.) The intuitive effect of this is to run through an α-sequence of stages, and then to run through a β-sequence. The resulting sequence will be well-ordered; so by ?? it is isomorphic to a (unique) ordinal. That ordinal can be regarded as the sum of α and β.

That is the intuitive idea behind ordinal addition. To define it rigorously, we start with the idea of taking copies of sets. The idea here is to use arbitrary tags, 0 and 1, to keep track of which object came from where:

Definition ord-arithmetic.1. The disjoint sum of A and B is $A \sqcup B = (A \times \{0\}) \cup (B \times \{1\})$.

We next define an ordering on pairs of ordinals:

Definition ord-arithmetic.2. For any ordinals $\alpha_1, \alpha_2, \beta_1, \beta_2$, say that:

$$\langle \alpha_1, \alpha_2 \rangle \prec \langle \beta_1, \beta_2 \rangle \text{ iff either } \alpha_2 \in \beta_2 \text{ or both } \alpha_2 = \beta_2 \text{ and } \alpha_1 \in \beta_1$$

This is a reverse lexicographic ordering, since you order by the second element, then by the first. Now recall that we wanted to define $\alpha + \beta$ as the order type of a copy of α followed by a copy of β. To achieve that, we say:

Definition ord-arithmetic.3. For any ordinals α, β, their sum is $\alpha + \beta = \text{ord}(\alpha \sqcup \beta, \prec)$.\(^1\)

The following result, together with ??, confirms that our definition is well-formed:

Lemma ord-arithmetic.4. $\langle \alpha \sqcup \beta, \prec \rangle$ is a well-order, for any ordinals α and β.

Proof. Obviously \prec is connected on $\alpha \sqcup \beta$. To show it is well-founded, fix a non-empty $X \subseteq \alpha \sqcup \beta$, and let

$$X_0 = \{ \langle a, b \rangle \in X : (\forall (x, y) \in X) b \leq y \}.$$

Now choose the element of X_0 with smallest first coordinate. \(\square\)

So we have a lovely, explicit definition of ordinal addition. Here is an unsurprising fact (recall that $1 = \{0\}$, by ??):

Proposition ord-arithmetic.5. $\alpha + 1 = \alpha^+$, for any ordinal α.

\(^1\)This is a slight abuse of notation; strictly we should write “$\{x, y \in \alpha \sqcup \beta : x \prec y\}$” in place of “$\prec$”.

addition rev: 92c87f3 (2020-04-09) by OLP / CC–BY
Proof. Consider the isomorphism f from $\alpha^+ = \alpha \cup \{\alpha\}$ to $\alpha \cup 1 = (\alpha \times \{0\}) \cup \{(0) \times \{1\}\}$ given by $f(\gamma) = \langle \gamma, 0 \rangle$ for $\gamma \in \alpha$, and $f(\alpha) = \langle 0, 1 \rangle$.

Moreover, it is easy to show that addition obeys certain recursive conditions:

Lemma ord-arithmetic.6. For any ordinals α, β, we have:

\[
\begin{align*}
\alpha + 0 &= \alpha \\
\alpha + (\beta + 1) &= (\alpha + \beta) + 1 \\
\alpha + \beta &= \text{lsub}_{\delta<\beta}(\alpha + \delta) & \text{if } \beta \text{ is a limit ordinal}
\end{align*}
\]

Proof. We check case-by-case; first:

\[
\begin{align*}
\alpha + 0 &= \text{ord}((\alpha \times \{0\}) \cup (0 \times \{1\}), \prec) \\
&= \text{ord}((\alpha \times \{0\}) \times \{0\}, \prec) \\
&= \alpha \\
\alpha + (\beta + 1) &= \text{ord}((\alpha \times \{0\}) \cup (\beta^+ \times \{1\}), \prec) \\
&= \text{ord}((\alpha \times \{0\}) \cup (\beta \times \{1\}), \prec) + 1 \\
&= (\alpha + \beta) + 1
\end{align*}
\]

Now let $\beta \neq 0$ be a limit. If $\delta < \beta$ then also $\delta + 1 < \beta$, so $\alpha + \delta$ is a proper initial segment of $\alpha + \beta$. So $\alpha + \beta$ is a strict upper bound on $X = \{\alpha + \delta : \delta < \beta\}$. Moreover, if $\alpha \leq \gamma < \alpha + \beta$, then clearly $\gamma = \alpha + \delta$ for some $\delta < \beta$. So $\alpha + \beta = \text{lsub}_{\delta<\beta}(\alpha + \delta)$.

But here is a striking fact. To define ordinal addition, we could instead have simply used the Transfinite Recursion Theorem, and laid down the recursion equations, exactly as given in Lemma ord-arithmetic.6 (though using “β^+” rather than “$\beta + 1$”).

There are, then, two different ways to define operations on the ordinals. We can define them synthetically, by explicitly constructing a well-ordered set and considering its order type. Or we can define them recursively, just by laying down the recursion equations. Done correctly, though, the outcome is identical. For ?? guarantees that these recursion equations pin down unique ordinals.

In many ways, ordinal arithmetic behaves just like addition of the natural numbers. For example, we can prove the following:

Lemma ord-arithmetic.7. If α, β, γ are ordinals, then:

1. if $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$
2. if $\alpha + \beta = \alpha + \gamma$, then $\beta = \gamma$
3. $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$, i.e., addition is associative
4. If $\alpha \leq \beta$, then $\alpha + \gamma \leq \beta + \gamma$
Proof. We prove (3), leaving the rest as an exercise. The proof is by Simple Transfinite Induction on γ, using Lemma ord-arithmetic.6. When $\gamma = 0$:

$$(\alpha + \beta) + 0 = \alpha + \beta = \alpha + (\beta + 0)$$

When $\gamma = \delta + 1$, suppose for induction that $(\alpha + \beta) + \delta = \alpha + (\beta + \delta)$; now:

$$(\alpha + \beta) + (\delta + 1) = ((\alpha + \beta) + \delta) + 1$$
$$= (\alpha + (\beta + \delta)) + 1$$
$$= \alpha + ((\beta + \delta) + 1)$$
$$= \alpha + (\beta + (\delta + 1))$$

When γ is a limit ordinal, suppose for induction that if $\delta \in \gamma$ then $(\alpha + \beta) + \delta = \alpha + (\beta + \delta)$; now:

$$(\alpha + \beta) + \gamma = \sum_{\delta < \gamma}(\alpha + \beta + \delta)$$
$$= \sum_{\delta < \gamma}(\alpha + (\beta + \delta))$$
$$= \alpha + \sum_{\delta < \gamma}(\beta + \delta)$$
$$= \alpha + (\beta + \gamma)$$

In these ways, ordinal addition should be very familiar.

Problem ord-arithmetic.1. Prove the remainder of Lemma ord-arithmetic.7.

But, there is a crucial way in which ordinal addition is not like addition on the natural numbers.

Proposition ord-arithmetic.8. Ordinal addition is not commutative; $1 + \omega = \omega < \omega + 1$.

Proof. Note that $1 + \omega = \sum_{n<\omega}(1 + n) = \omega \in \omega \cup \{\omega\} = \omega^+ = \omega + 1$.

Whilst this may initially come as a surprise, it shouldn’t. On the one hand, when you consider $1 + \omega$, you are thinking about the order type you get by putting an extra element before all the natural numbers. Reasoning as we did with Hilbert’s Hotel in ???, intuitively, this extra first element shouldn’t make any difference to the overall order type. On the other hand, when you consider $\omega + 1$, you are thinking about the order type you get by putting an extra element after all the natural numbers. And that’s a radically different beast!

Photo Credits

Bibliography