choice.1 The Tarski-Scott Trick

In ??, we defined cardinals as ordinals. To do this, we assumed the Axiom of Well-Ordering. We did this, for no other reason than that it is the “industry standard”.

Before we discuss any of the philosophical issues surrounding Well-Ordering, then, it is important to be clear that we can depart from the industry standard, and develop a theory of cardinals without assuming Well-Ordering. We can still employ the definitions of $A \approx B$, $A \preceq B$ and $A \prec B$, as they appeared in ??.

We will just need a new notion of cardinal.

A naïve thought would be to attempt to define A’s cardinality thus:

$$\{ x : A \approx x \}.$$

You might want to compare this with Frege’s definition of $\#xFx$, sketched at the very end of ??.

And, for reasons we gestured at there, this definition fails. Any singleton set is equinumerous with $\{\emptyset\}$. But new singleton sets are formed at every successor stage of the hierarchy (just consider the singleton of the previous stage). So $\{ x : A \approx x \}$ does not exist, since it cannot have a rank.

To get around this problem, we use a trick due to Tarski and Scott:

Definition choice.1 (Tarski-Scott). For any formula $\varphi(x)$, let $[x : \varphi(x)]$ be the set of all x, of least possible rank, such that $\varphi(x)$ (or \emptyset, if there are no φs).

We should check that this definition is legitimate. Working in ZF, ?? guarantees that rank(x) exists for every x. Now, if there are any entities satisfying φ, then we can let α be the least rank such that $(\exists x \subseteq V_\alpha)\varphi(x)$, i.e., $(\forall \beta \in \alpha)(\forall x \subseteq V_\beta)\sim \varphi(x)$. We can then define $[x : \varphi(x)]$ by Separation as $\{x \in V_{\alpha+1} : \varphi(x)\}$.

Having justified the Tarski-Scott trick, we can now use it to define a notion of cardinality:

Definition choice.2. The ts-cardinality of A is $\text{tsc}(A) = [x : A \approx x]$.

The definition of a ts-cardinal does not use Well-Ordering. But, even without that Axiom, we can show that ts-cardinals behave rather like cardinals as defined in ??.

For example, if we restate ?? and ?? in terms of ts-cardinals, the proofs go through just fine in ZF, without assuming Well-Ordering.

Whilst we are on the topic, it is worth noting that we can also develop a theory of ordinals using the Tarski-Scott trick. Where $\langle A, \prec \rangle$ is a well-ordering, let $\text{tso}(A, \prec) = [\langle X, R \rangle : \langle A, \prec \rangle \equiv \langle X, R \rangle]$. For more on this treatment of cardinals and ordinals, see Potter (2004, chs. 9–12).

1Which may have parameters.
Photo Credits

Bibliography