
Chapter udf

Choice

choice.1 Introduction

sth:choice:intro:
sec

In ??–??, we developed a theory of cardinals by treating cardinals as ordinals.
That approach depends upon the Axiom of Well-Ordering. It turns out that
Well-Ordering is equivalent to another principle—the Axiom of Choice—and
there has been serious philosophical discussion of its acceptability. Our question
for this chapter are: How is the Axiom used, and can it be justified?

choice.2 The Tarski-Scott Trick

sth:choice:tarskiscott:
sec

In ??, we defined cardinals as ordinals. To do this, we assumed the Axiom of
Well-Ordering. We did this, for no other reason than that it is the “industry
standard”.

Before we discuss any of the philosophical issues surrounding Well-Ordering,
then, it is important to be clear that we can depart from the industry standard,
and develop a theory of cardinals without assuming Well-Ordering. We can still
employ the definitions of A ≈ B, A � B and A ≺ B, as they appeared in ??.
We will just need a new notion of cardinal.

A näıve thought would be to attempt to define A’s cardinality thus:

{x : A ≈ x}.

You might want to compare this with Frege’s definition of #xFx, sketched
at the very end of ??. And, for reasons we gestured at there, this definition
fails. Any singleton set is equinumerous with {∅}. But new singleton sets are
formed at every successor stage of the hierarchy (just consider the singleton of
the previous stage). So {x : A ≈ x} does not exist, since it cannot have a rank.

To get around this problem, we use a trick due to Tarski and Scott:

Definition choice.1 (Tarski-Scott). For any formula ϕ(x),1 let [x : ϕ(x)] be
the set of all x, of least possible rank, such that ϕ(x) (or ∅, if there are no ϕs).

1Which may have parameters.
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We should check that this definition is legitimate. Working in ZF, ??
guarantees that rank(x) exists for every x. Now, if there are any entities
satisfying ϕ, then we can let α be the least rank such that (∃x ⊆ Vα)ϕ(x),
i.e., (∀β ∈ α)(∀x ⊆ Vβ)¬ϕ(x). We can then define [x : ϕ(x)] by Separation as
{x ∈ Vα+1 : ϕ(x)}.

Having justified the Tarski-Scott trick, we can now use it to define a notion
of cardinality:

Definition choice.2. The ts-cardinality of A is tsc(A) = [x : A ≈ x].

The definition of a ts-cardinal does not use Well-Ordering. But, even
without that Axiom, we can show that ts-cardinals behave rather like cardinals
as defined in ??. For example, if we restate ?? and ?? in terms of ts-cardinals,
the proofs go through just fine in ZF, without assuming Well-Ordering.

Whilst we are on the topic, it is worth noting that we can also develop a
theory of ordinals using the Tarski-Scott trick. Where 〈A,<〉 is a well-ordering,
let tso(A,<) = [〈X,R〉 : 〈A,<〉 ∼= 〈X,R〉]. For more on this treatment of
cardinals and ordinals, see Potter (2004, chs. 9–12).

choice.3 Comparability and Hartogs’ Lemma

sth:choice:hartogs:
sec

That’s the plus side. Here’s the minus side. Without Choice, things get messy.
To see why, here is a nice result due to Hartogs (1915):

Lemma choice.3 (in ZF). sth:choice:hartogs:

HartogsLemma

For any set A, there is an ordinal α such that
α � A

Proof. If B ⊆ A and R ⊆ B2, then 〈B,R〉 ⊆ Vrank(A)+4 by ??. So, using
Separation, consider:

C = {〈B,R〉 ∈ Vrank(A)+5 : B ⊆ A and 〈B,R〉 is a well-ordering}

Using Replacement and ??, form the set:

α = {ord(B,R) : 〈B,R〉 ∈ C}.

By ??, α is an ordinal, since it is a transitive set of ordinals. After all, if
γ ∈ β ∈ α, then β = ord(B,R) for some B ⊆ R, whereupon γ = ord(Bb, Rb)
for some b ∈ B by ??, so that γ ∈ α.

For reductio, suppose there is an injection f : α→ A. Then, where:

B = ran(f)

R = {〈f(α), f(β)〉 ∈ A×A : α ∈ β}.

Clearly α = ord(B,R) and 〈B,R〉 ∈ C. So α ∈ α, which is a contradiction.

This entails a deep result:

Theorem choice.4 (in ZF). The following claims are equivalent:
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1.sth:choice:hartogs:

equivwo

The Axiom of Well-Ordering

2.sth:choice:hartogs:

equivcompare

Either A � B or B � A, for any sets A and B

Proof. (1) ⇒ (2). Fix A and B. Invoking (1), there are well-orderings 〈A,R〉
and 〈B,S〉. Invoking ??, let f : α → 〈A,R〉 and g : β → 〈B,S〉 be isomor-
phisms. By Trichotomy, either α ∈ β or α = β or β ∈ α. In the first two cases
α ⊆ β, so g ◦ f−1 : A→ B is an injection, and hence A � B. Similarly if β ∈ α
then B � A.

(1) ⇒ (2). Fix A; by Lemma choice.3 there is some ordinal β such that
β � A. Invoking (2), we have A � β. So there is some injection f : A → β,
and we can use this injection to well-order the elements of A, by defining an
order {〈a, b〉 ∈ A×A : f(a) ∈ f(b)}.

As an immediate consequence: if Well-Ordering fails, then some sets are
literally incomparable with regard to their size. So, if Well-Ordering fails, then
transfinite cardinal arithmetic will be messy. For example, we will have to
abandon the idea that if A and B are infinite then AtB ≈ A×B ≈M , where
M is the larger of A and B (see ??). The problem is simple: if we cannot
compare the size of A and B, then it is nonsensical to ask which is larger.

choice.4 The Well-Ordering Problem

sth:choice:woproblem:
sec

Evidently rather a lot hangs on whether we accept Well-Ordering. But the
discussion of this principle has tended to focus on an equivalent principle, the
Axiom of Choice. So we will now turn our attention to that (and prove the
equivalence).

In 1883, Cantor expressed his support for the Axiom of Well-Ordering,
calling it “a law of thought which appears to me to be fundamental, rich in
its consequences, and particularly remarkable for its general validity” (cited
in Potter 2004, p. 243). But Cantor ultimately became convinced that the
“Axiom” was in need of proof. So did the mathematical community.

The problem was “solved” by Zermelo in 1904. To explain his solution, we
need some definitions.

Definition choice.5. A function f is a choice function iff f(x) ∈ x for all
x ∈ dom(f). We say that f is a choice function for A iff f is a choice function
with dom(f) = A \ {∅}.

Intuitively, for every (non-empty) set x ∈ A, a choice function for A chooses
a particular element, f(x), from x. The Axiom of Choice is then:

Axiom (Choice). Every set has a choice function.

Zermelo showed that Choice entails well-ordering, and vice versa:

Theorem choice.6 (in ZF).sth:choice:woproblem:

thmwochoice

Well-Ordering and Choice are equivalent.
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Proof. Left-to-right. Let A be a set of sets. Then
⋃
A exists by the Axiom of

Union, and so by Well-Ordering there is some < which well-orders
⋃
A. Now

let f(x) = the <-least member of x. This is a choice function for A.
Right-to-left. Fix A. By Choice, there is a choice function, f , for ℘(A)\{∅}.

Using Transfinite Recursion, define:

g(0) = f(A)

g(α) =

{
stop! if A = g[α]

f(A \ g[α]) otherwise

(The indication to “stop!” is just a shorthand for what would otherwise be a
more long-winded definition. That is, when A = g[α] for the first time, let
g(δ) = A for all δ ≤ α.) Note that we do stop, since otherwise we would have
that α ≺ ℘(A) \ {∅} for every ordinal α, contradicting Lemma choice.3.

We do not stop until we have exhausted A. Since we stop, ran(g) = A.
Since f is a choice function, for each α we have g(α) = f(A\g[α]) ∈ A\g[α];

i.e., g(α) /∈ g[α]. So if g(α) = g(β) then g(β) /∈ g[α], i.e., β /∈ α, and similarly
α /∈ β. So α = β, by Trichotomy. So g is an injection.

Assembling these two facts, g is a bijection from some ordinal to A. Now g
can be used to well-order A.

So Well-Ordering and Choice stand or fall together. But the question re-
mains: do they stand or fall?

choice.5 Countable Choice

sth:choice:countablechoice:
sec

It is easy to prove, without any use of Choice/Well-Ordering, that:

Lemma choice.7 (in Z−). Every finite set has a choice function.

Proof. Let a = {b1, . . . , bn}. Suppose for simplicity that each bi 6= ∅. So
there are objects c1, . . . , cn such that c1 ∈ b1, . . . , cn ∈ bn. Now by ??, the set
{〈b1, c1〉, . . . , 〈bn, cn〉} exists; and this is a choice function for a.

But matters get murkier as soon as we consider infinite sets. For example,
consider this “minimal” extension to the above:

Countable Choice. Every countable set has a choice function.

This is a special case of Choice. And it transpires that this principle was
invoked fairly frequently, without an obvious awareness of its use. Here are
two nice examples.2

Example 1. Here is a natural thought: for any set A, either ω � A, or
A ≈ n for some n ∈ ω. This is one way to state the intuitive idea, that every

2Due to Potter (2004, §9.4) and Luca Incurvati.
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set is either finite or infinite. Cantor, and many other mathematicians, made
this claim without proving it. Cautious as we are, we proved this in ??. But
in that proof we were working in ZFC, since we were assuming that any set
A can be well-ordered, and hence that |A| is guaranteed to exist. That is: we
explicitly assumed Choice.

In fact, Dedekind (1888) offered his own proof of this claim, as follows:

Theorem choice.8 (in Z− + Countable Choice). For any A, either ω � A
or A ≈ n for some n ∈ ω.

Proof. Suppose A 6≈ n for all n ∈ ω. Then in particular for each n < ω there is
subset An ⊆ A with exactly 2n elements. Using this sequence A0, A1, A2, . . .,
we define for each n:

Bn = An \ (A0 ∪A1 ∪ . . . ∪An−1).

Now note the following

|A0 ∪A1 ∪ . . . ∪An−1| ≤ |A0|+ |A1|+ . . .+ |An−1|
= 1 + 2 + . . .+ 2n−1

= 2n − 1

< 2n = |An|

Hence each Bn has at least one member, cn. Moreover, the Bns are pairwise
disjoint; so if cn = cm then n = m. But every cn ∈ A. So the function
f(n) = cn is an injection ω → A.

Dedekind did not flag that he had used Countable Choice. But, did you
spot its use? Look again. (Really: Look again.)

The proof used Countable Choice twice. We used it once, to obtain our
sequence of sets A0, A1, A2, . . . We then used it again to select our elements
cn from each Bn. Moreover, this use of Choice is ineliminable. Cohen (1966,
p. 138) proved that the result fails if we have no version of Choice. That is: it
is consistent with ZF that there are sets which are incomparable with ω.

Example 2. In 1878, Cantor stated that a countable union of countable sets
is countable. He did not present a proof, perhaps indicating that he took the
proof to be obvious. Now, cautious as we are, we proved a more general version
of this result in ??. But our proof explicitly assumed Choice. And even the
proof of the less general result requires Countable Choice.

Theorem choice.9 (in Z− + Countable Choice). If An is countable for each
n ∈ ω, then

⋃
n<ω An is countable.

Proof. Without loss of generality, suppose that each An 6= ∅. So for each
n ∈ ω there is a surjection fn : ω → An. Define f : ω × ω →

⋃
n<ω An by

f(m,n) = fn(m). The result follows because ω × ω is countable (??) and f is
a surjection.
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Did you spot the use of the Countable Choice? It is used to choose our
sequence of functions f0, f1, f2, . . . 3 And again, the result fails in the absence
of any Choice principle. Specifically, Feferman and Levy (1963) proved that it is
consistent with ZF that a countable union of countable sets has cardinality i1.
But here is a much funnier statement of the point, from Russell:

This is illustrated by the millionaire who bought a pair of socks
whenever he bought a pair of boots, and never at any other time,
and who had such a passion for buying both that at last he had
ℵ0 pairs of boots and ℵ0 pairs of socks. . . Among boots we can
distinguish right and left, and therefore we can make a selection of
one out of each pair, namely, we can choose all the right boots or all
the left boots; but with socks no such principle of selection suggests
itself, and we cannot be sure, unless we assume the multiplicative
axiom [i.e., in effect Choice], that there is any class consisting of
one sock out of each pair. (Russell, 1919, p. 126)

In short, some form of Choice is needed to prove the following: If you have
countably many pairs of socks, then you have (only) countably many socks.
And in fact, without Countable Choice (or something equivalent), a countable
union of countable sets can fail to be countable.

The moral is that Countable Choice was used repeatedly, without much
awareness of its users. The philosophicaly question is: How could we justify
Countable Choice?

An attempt at an intuitive justification might invoke an appeal to a super-
task. Suppose we make the first choice in 1/2 a minute, our second choice in
1/4 a minute, . . . , our n-th choice in 1/2n a minute, . . . Then within 1 minute,
we will have made an ω-sequence of choices, and defined a choice function.

But what, really, could such a thought-experiment tell us? For a start, it
relies upon taking this idea of “choosing” rather literally. For another, it seems
to bind up mathematics in metaphysical possibility.

More important: it is not going to give us any justification for Choice tout
court, rather than mere Countable Choice. For if we need every set to have
a choice function, then we will need to be able to perform a “supertask of
arbitrary ordinal length”. Bluntly, that idea is laughable.

choice.6 Intrinsic Considerations about Choice

sth:choice:justifications:
sec

The broader question, then, is whether Well-Ordering, or Choice, or indeed the
comparability of all sets as regards their size—it doesn’t matter which—can be
justified.

Here is an attempted intrinsic justification. Back in ??, we introduced
several principles about the hierarchy. One of these is worth restating:

3A similar use of Choice occurred in ?? when we “fixed a bijection fβ” for each β ∈ α.
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Stages-accumulate. For any stage S, and for any sets which were formed
before stage S: a set is formed at stage S whose members are exactly
those sets. Nothing else is formed at stage S.

In fact, many authors have suggested that the Axiom of Choice can be justified
via (something like) this principle. We will briefly provide a gloss on that
approach.

We will start with a simple little result, which offers yet another equivalent
for Choice:

Theorem choice.10 (in ZF).sth:choice:justifications:

choiceset

Choice is equivalent to the following principle.
If the elements of A are disjoint and non-empty, then there is some C such
that C ∩ x is a singleton for every x ∈ A. (We call such a C a choice set for
A.)

The proof of this result is straightforward, and we leave it as an exercise
for the reader.

Problem choice.1. Prove Theorem choice.10. If you struggle, you can find a
proof in (Potter, 2004, pp. 242–3).

The essential point is that a choice set for A is just the range of a choice
function for A. So, to justify Choice, we can simply try to justify its equivalent
formulation, in terms of the existence of choice sets. And we will now try to
do exactly that.

Let A’s elements be disjoint and non-empty. By Stages-are-key (see ??),
A is formed at some stage S. Note that all the elements of

⋃
A are available

before stage S. Now, by Stages-accumulate, for any sets which were formed
before S, a set is formed whose members are exactly those sets. Otherwise
put: every possible collections of earlier-available sets will exist at S. But it
is certainly possible to select objects which could be formed into a choice set
for A; that is just some very specific subset of

⋃
A. So: some such choice set

exists, as required.
Well, that’s a very quick attempt to offer a justification of Choice on intrin-

sic grounds. But, to pursue this idea further, you should read Potter’s (2004,
§14.8) neat development of it.

choice.7 The Banach-Tarski Paradox

sth:choice:banach:
sec

We might also attempt to justify Choice, as Boolos attempted to justify Re-
placement, by appealing to extrinsic considerations (see ??). After all, adopt-
ing Choice has many desirable consequences: the ability to compare every
cardinal; the ability to well-order every set; the ability to treat cardinals as a
particular kind of ordinal; etc.

Sometimes, however, it is claimed that Choice has undesirable consequences.
Mostly, this is due to a result by Banach and Tarski (1924).
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Theorem choice.11 (Banach-Tarski Paradox (in ZFC)). Any ball can be
decomposed into finitely many pieces, which can be reassembled (by rotation
and transportation) to form two copies of that ball.

At first glance, this is a bit amazing. Clearly the two balls have twice the
volume of the original ball. But rigid motions—rotation and transportation—
do not change volume. So it looks as if Banach-Tarski allows us to magick new
matter into existence.

It gets worse.4 Similar reasoning shows that a pea can be cut into finitely
many pieces, which can then be reassembled (by rotation and transportation)
to form an entity the shape and size of Big Ben.

None of this, however, holds in ZF on its own.5 So we face a decision:
reject Choice, or learn to live with the “paradox”.

We’re going to suggest that we should learn to live with the “paradox”.
Indeed, we don’t think it’s much of a paradox at all. In particular, we don’t
see why it is any more or less paradoxical than any of the following results:6

1. There are as many points in the interval (0, 1) as in R.
Proof : consider tan(π(r − 1/2))).

2. There are as many points in a line as in a square.
See ?? and ??.

3. There are space-filling curves.
See ?? and ??.

None of these three results require Choice. Indeed, we now just regard them
as surprising, lovely, bits of mathematics. Maybe we should adopt the same
attitude to the Banach-Tarski Paradox.

To be sure, a technical observation is required here; but it only requires
keeping a level head. Rigid motions preserve volume. Consequently, the five7

pieces into which the ball is decomposed cannot all be measurable. Roughly
put, then, it makes no sense to assign a volume to these individual pieces. You
should think of these as unpicturable, “infinite scatterings” of points. Now,
maybe it is “weird” to conceive of such “infinitely scattered” sets. But their
existence seems to fall out from the injunction, embodied in Stages-accumulate,
that you should form all possible collections of earlier-available sets.

If none of that convinces, here is a final (extrinsic) argument in favour of
embracing the Banach-Tarski Paradox. It immediately entails the best math
joke of all time:

4See Tomkowicz and Wagon (2016, Theorem 3.12).
5Though Banach-Tarski can be proved with principles which are strictly weaker than

Choice; see Tomkowicz and Wagon (2016, 303).
6Potter (2004, 276–7), Weston (2003, 16), Tomkowicz and Wagon (2016, 31, 308–9),

make similar points, using other examples.
7We stated the Paradox in terms of “finitely many pieces”. In fact, Robinson (1947)

proved that the paradoxical decomposition can be achieved with five pieces (but no fewer).
For a proof, see Tomkowicz and Wagon (2016, pp. 66–7).
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Question. What’s an anagram of “Banach-Tarski”?

Answer. “Banach-Tarski Banach-Tarski”.

choice.8 Vitali’s Paradox

sth:choice:vitali:
sec

To get a real sense of whether the Banach-Tarski construction is acceptable or
not, we should examine its proof. Unfortunately, that would require much more
algebra than we can present here. However, we can offer some quick remarks
which might shed some insight on the proof of Banach-Tarski,8 by focussing
on the following result:

Theorem choice.12 (Vitali’s Paradox (in ZFC)).sth:choice:vitali:

vitaliparadox

Any circle can be decom-
posed into countably many pieces, which can be reassembled (by rotation and
transportation) to form two copies of that circle.

This is much easier to prove than the Banach–Tarski Paradox. We have
called it “Vitali’s Paradox”, since it follows follows from Vitali’s 1905 con-
struction of an unmeasurable set. But the set-theoretic aspects of the proof of
Vitali’s Paradox and the Banach-Tarski Paradox are very similar. The essen-
tial difference between the results is just that Banach-Tarski considers a finite
decomposition, whereas Vitali’s Paradox onsiders a countably infinite decom-
position. As Weston (2003) puts it, Vitali’s Paradox “is certainly not nearly
as striking as the Banach–Tarski paradox, but it does illustrate that geometric
paradoxes can happen even in ‘simple’ situations.”

Vitali’s Paradox concerns a two-dimensional figure, a circle. So we will work
on the plane, R2. Let R be the set of (clockwise) rotations of points around
the origin by rational radian values between [0, 2π). Here are some algebraic
facts about R (if you don’t understand the statement of the result, the proof
will make its meaning clear):

Lemma choice.13.sth:choice:vitali:

rotationsgroupabelian

R forms an abelian group under composition of functions.

Proof. Writing 0R for the rotation by 0 radians, this is an identity element for
R, since ρ ◦ 0R = 0R ◦ ρ = ρ for any ρ ∈ R.

Every element has an inverse. Where ρ ∈ R rotates by r radians, ρ−1 ∈ R
rotates by 2π − r radians, so that ρ ◦ ρ−1 = 0R.

Composition is associative: (τ ◦ σ) ◦ ρ = τ ◦ (σ ◦ ρ) for any ρ, σ, τ ∈ R
Composition is commutative: σ ◦ ρ = ρ ◦ σ for any ρ, σ ∈ R.

In fact, we can split our group R in half, and then use either half to recover
the whole group:

Lemma choice.14.sth:choice:vitali:

disjointgroup

There is a partition of R into two disjoint sets, R1 and
R2, both of which are a basis for R.

8For a much fuller treatment, see Weston (2003) or Tomkowicz and Wagon (2016).
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Proof. Let R1 consist of the rotations by rational radian values in [0, π); let
R2 = R \ R1. By elementary algebra, {ρ ◦ ρ : ρ ∈ R1} = R. A similar result
can be obtained for R2.

We will use this fact about groups to establish Theorem choice.12. Let S
be the unit circle, i.e., the set of points exactly 1 unit away from the origin
of the plane, i.e., {〈r, s〉 ∈ R2 :

√
r2 + s2 = 1}. We will split S into parts by

considering the following relation on S:

r ∼ s iff (∃ρ ∈ R)ρ(r) = s.

That is, the points of S are linked by this relation iff you can get from one to
the other by a rational-valued rotation about the origin. Unsurprisingly:

Lemma choice.15. ∼ is an equivalence relation.

Proof. Trivial, using Lemma choice.13.

We now invoke Choice to obtain a set, C, containing exactly one member
from each equivalence class of S under ∼. That is, we consider a choice function
f on the set of equivalence classes,9

E = {[r]∼ : r ∈ S},

and let C = ran(f). For each rotation ρ ∈ R, the set ρ[C] consists of the points
obtained by applying the rotation ρ to each point in C. These next two results
show that these sets cover the circle completely and without overlap:

Lemma choice.16. sth:choice:vitali:

vitalicover

S =
⋃
ρ∈R ρ[C].

Proof. Fix s ∈ S; there is some r ∈ C such that r ∈ [s]∼, i.e., r ∼ s, i.e.,
ρ(r) = s for some ρ ∈ R.

Lemma choice.17. sth:choice:vitali:

vitalinooverlap

If ρ1 6= ρ2 then ρ1[C] ∩ ρ2[C] = ∅.

Proof. Suppose s ∈ ρ1[C] ∩ ρ2[C]. So s = ρ1(r1) = ρ2(r2) for some r1, r2 ∈ C.
Hence ρ−12 (ρ1(r1)) = r2, and ρ−12 ◦ ρ1 ∈ R, so r1 ∼ r2. So r1 = r2, as C selects
exactly one member from each equivalence class under ∼. So s = ρ1(r1) =
ρ2(r1), and hence ρ1 = ρ2.

We now apply our earlier algebraic facts to our circle:

Lemma choice.18. sth:choice:vitali:

pseudobanachtarski

There is a partition of S into two disjoint sets, D1 and
D2, such that D1 can be partitioned into countably many sets which can be
rotated to form a copy of S (and similarly for D2).

9Note: since R is enumerable, each element of E is enumerable. Since S is non-
enumerable, it follows from Lemma choice.16 and ?? that E is non-enumerable. So this
is a use of uncountable Choice.
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Proof. Using R1 and R2 from Lemma choice.14, let:

D1 =
⋃
ρ∈R1

ρ[C] D2 =
⋃
ρ∈R1

ρ[C]

This is a partition of S, by Lemma choice.16, and D1 and D2 are disjoint by
Lemma choice.17. By construction, D1 can be partitioned into countably many
sets, ρ[C] for each ρ ∈ R1. And these can be rotated to form a copy of S, since
S =

⋃
ρ∈R ρ[C] =

⋃
ρ∈R1

(ρ ◦ ρ)[C] by Lemma choice.14 and Lemma choice.16.
The same reasoning applies to D2.

This immediately entails Vitali’s Paradox. For we can generate two copies
of S from S, just by splitting it up into countably many pieces (the various
ρ[C]’s) and then rigidly moving them (simply rotate each piece of D1, and first
transport and then rotate each piece of D2).

Let’s recap the proof-strategy. We started with some algebraic facts about
the group of rotations on the plane. We used this group to partition S into
equivalence classes. We then arrived at a “paradox”, by using Choice to select
elements from each class.

We use exactly the same strategy to prove Banach–Tarski. The main dif-
ference is that the algebraic facts used to prove Banach–Tarski are significantly
more more complicated than those used to prove Vitali’s Paradox. But those al-
gebraic facts have nothing to do with Choice. We will summarise them quickly.

To prove Banach–Tarski, we start by establishing an analogue of Lemma choice.14:
any free group can be split into four pieces, which intuitively we can “move
around” to recover two copies of the whole group.10 We then show that we can
use two particular rotations around the origin of R3 to generate a free group of
rotations, F .11 (No Choice yet.) We now regard points on the surface of the
sphere as “similar” iff one can be obtained from the other by a rotation in F .
We then use Choice to select exactly one point from each equivalence class of
“similar” points. Applying our division of F to the surface of the sphere, as in
Lemma choice.18, we split that surface into four pieces, which we can “move
around” to obtain two copies of the surface of the sphere. And this establishes
(Hausdorff, 1914):

Theorem choice.19 (Hausdorff’s Paradox (in ZFC)). The surface of any
sphere can be decomposed into finitely many pieces, which can be reassembled
(by rotation and transportation) to form two disjoint copies of that sphere.

A couple of further algebraic tricks are needed to obtain the full Banach-
Tarski Theorem (which concerns not just the sphere’s surface, but its interior
too). Frankly, however, this is just icing on the algebraic cake. Hence Weston
writes:

10The fact that we can use four pieces is due to Robinson (1947). For a recent proof, see
Tomkowicz and Wagon (2016, Theorem 5.2). We follow Weston (2003, p. 3) in describing
this as “moving” the pieces of the group.

11See Tomkowicz and Wagon (2016, Theorem 2.1).
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[. . . ] the result on free groups is the key step in the proof of the
Banach-Tarski paradox. From this point of view, the Banach-Tarski
paradox is not a statement about R3 so much as it is a statement
about the complexity of the group [of translations and rotations in
R3]. (Weston, 2003, p. 16)

That is: whether we can offer a finite decomposition (as in Banach–Tarski) or a
countably infinite decomposition (as in Vitali’s Paradox) comes down to certain
group-theoretic facts about working in two-dimension or three-dimensions.

Admittedly, this last observation slightly spoils the joke at the end of sec-
tion choice.7. Since it is two dimensional, “Banach-Tarski” must be divided
into a countable infinity of pieces, if one wants to rearrange those pieces to
form “Banach-Tarski Banach-Tarski”. To repair the joke, one must write in
three dimensions. We leave this as an exercise for the reader.

One final comment. In section choice.7, we mentioned that the “pieces”
of the sphere one obtains cannot be measurable, but must be unpicturable
“infinite scatterings”. The same is true of our use of Choice in obtaining
Lemma choice.18. And this is all worth explaining.

Again, we must sketch some background (but this is just a sketch; you may
want to consult a textbook entry on measure). To define a measure for a set
X is to assign a value µ(E) ∈ R for each E in some “σ-algebra” on X. Details
here are not essential, except that the function µ must obey the principle of
countable additivity: the measure of a countable union of disjoint sets is the
sum of their individual measures, i.e., µ(

⋃
n<ωXn) =

∑
n<ω µ(Xn) whenever

the Xns are disjoint. To say that a set is “unmeasurable” is to say that no
measure can be suitably assigned. Now, using our R from before:

Corollary choice.20 (Vitali). Let µ be a measure such that µ(S) = 1, and
such that µ(X) = µ(Y ) if X and Y are congruent. Then ρ[C] is unmeasurable
for all ρ ∈ R.

Proof. For reductio, suppose otherwise. So let µ(σ[C]) = r for some σ ∈ R and
some r ∈ R. For any ρ ∈ C, ρ[C] and σ[C] are congruent, and hence µ(ρ[C]) = r
for any ρ ∈ C. By Lemma choice.16 and Lemma choice.17, S =

⋃
ρ∈R ρ[C] is a

countable union of pairwise disjoint sets. So countable additivity dictates that
µ(S) = 1 is the sum of the measures of each ρ[C], i.e.,

1 = µ(S) =
∑
ρ∈R

µ(ρ[C]) =
∑
ρ∈R

r

But if r = 0 then
∑
ρ∈R r = 0, and if r > 0 then

∑
ρ∈R r =∞.
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