Now that we have been introduced to cardinals, it is worth spending a little time talking about different varieties of cardinals; specifically, finite, enumerable, and non-enumerable cardinals.

Our first two results entail that the finite cardinals will be exactly the finite ordinals, which we defined as our natural numbers back in ??:

Proposition cardinals.1. Let \(n, m \in \omega \). Then \(n = m \) iff \(n \approx m \).

Proof. Left-to-right is trivial. To prove right-to-left, suppose \(n \approx m \) although \(n \neq m \). By Trichotomy, either \(n \in m \) or \(m \in n \); suppose \(n \in m \) without loss of generality. Then \(n \subseteq m \) and there is a bijection \(f: m \to n \), so that \(m \) is Dedekind infinite, contradicting ??.

Corollary cardinals.2. If \(n \in \omega \), then \(n \) is a cardinal.

Proof. Immediate.

It also follows that several reasonable notions of what it might mean to describe a cardinal as “finite” or “infinite” coincide:

Theorem cardinals.3. For any set \(A \), the following are equivalent:

1. \(|A| \notin \omega \), i.e., \(A \) is not a natural number;
2. \(\omega \leq |A| \);
3. \(A \) is Dedekind infinite.

Proof. From ??, ??, and Corollary cardinals.2.

This licenses the following definition of some notions which we used rather informally in ??:

Definition cardinals.4. We say that \(A \) is finite iff \(|A| \) is a natural number, i.e., \(|A| \in \omega \). Otherwise, we say that \(A \) is infinite.

But note that this definition is presented against the background of ZFC. After all, we needed Well-Ordering to guarantee that every set has a cardinality. And indeed, without Well-Ordering, there can be a set which is neither finite nor Dedekind infinite. We will return to this sort of issue in ?? . For now, we continue to rely upon Well-Ordering.

Let us now turn from the finite cardinals to the infinite cardinals. Here are two elementary points:

Corollary cardinals.5. \(\omega \) is the least infinite cardinal.

Proof. \(\omega \) is a cardinal, since \(\omega \) is Dedekind infinite and if \(\omega \approx n \) for any \(n \in \omega \) then \(n \) would be Dedekind infinite, contradicting ?? . Now \(\omega \) is the least infinite cardinal by definition.
Corollary cardinals.6. Every infinite cardinal is a limit ordinal.

Proof. Let α be an infinite successor ordinal, so $\alpha = \beta + 1$ for some β. By Proposition cardinals.1, β is also infinite, so $\beta \approx \beta + 1$ by ???. Now $|\beta| = |\beta + 1| = |\alpha|$ by ??, so that $\alpha \neq |\alpha|$.

Now, as early as ??, we flagged we can distinguish between enumerable and non-enumerable infinite sets. That definition naturally leads to the following:

Proposition cardinals.7. A is enumerable iff $|A| \leq \omega$, and A is non-enumerable iff $\omega < |A|$.

Proof. By Trichotomy, the two claims are equivalent, so it suffices to prove that A is enumerable iff $|A| \leq \omega$. For right-to-left: if $|A| \leq \omega$, then $A \leq \omega$ by ?? and Corollary cardinals.5. For left-to-right: suppose A is enumerable; then by ?? there are three possible cases:

1. if $A = \emptyset$, then $|A| = 0 \leq \omega$, by Corollary cardinals.2 and ??.
2. if $n \approx A$, then $|A| = n \leq \omega$, by Corollary cardinals.2 and ??.
3. if $\omega \approx A$, then $|A| = \omega$, by Corollary cardinals.5.

So in all cases, $|A| \leq \omega$.

Indeed, ω has a special place. Whilst there are many countable ordinals:

Corollary cardinals.8. ω is the only enumerable infinite cardinal.

Proof. Let a be an enumerable infinite cardinal. Since a is infinite, $\omega \leq a$. Since a is an enumerable cardinal, $a = |a| \leq \omega$. So $a = \omega$ by Trichotomy.

Of course, there are infinitely many cardinals. So we might ask: How many cardinals are there? The following results show that we might want to reconsider that question.

Proposition cardinals.9. If every member of X is a cardinal, then $\bigcup X$ is a cardinal.

Proof. It is easy to check that $\bigcup X$ is an ordinal. Let $\alpha \in \bigcup X$ be an ordinal; then $\alpha \in b \in X$ for some cardinal b. Since b is a cardinal, $\alpha \prec b$. Since $b \subseteq \bigcup X$, we have $b \preceq \bigcup X$, and so $\alpha \preceq \bigcup X$. Generalising, $\bigcup X$ is a cardinal.

Theorem cardinals.10. There is no largest cardinal.

Proof. For any cardinal a, Cantor’s Theorem (??) and ?? entail that $a < |\wp(a)|$.

Theorem cardinals.11. The set of all cardinals does not exist.
Proof. For reductio, suppose $C = \{a : a \text{ is a cardinal}\}$. Now $\bigcup C$ is a cardinal by Proposition cardinals.9, so by Theorem cardinals.10 there is a cardinal $b > \bigcup C$. By definition $b \in C$, so $b \subseteq \bigcup C$, so that $b \leq \bigcup C$, a contradiction. \qed

You should compare this with both Russell’s Paradox and Burali-Forti.

Photo Credits

Bibliography