
Chapter udf

Cardinal Arithmetic

card-arithmetic.1 Defining the Basic Operations

sth:card-arithmetic:opps:
sec

Since we do not need to keep track of order, cardinal arithmetic is rather easier
to define than ordinal arithmetic. We will define addition, multiplication, and
exponentiation simultaneously.

Definition card-arithmetic.1. When a and b are cardinals:

a⊕ b := |a t b|
a⊗ b := |a× b|

ab :=
∣∣ba∣∣

where XY = {f : f is a function X → Y }. (It is easy to show that XY exists
for any sets X and Y ; we leave this as an exercise.)

Problem card-arithmetic.1. Prove in Z− that XY exists for any sets X
and Y . Working in ZF, compute rank(XY ) from rank(X) and rank(Y ), in the
manner of ??.

It might help to explain this definition. Concerning addition: this uses
the notion of disjoint sum, t, as defined in ??; and it is easy to see that this
definition gives the right verdict for finite cases. Concerning multiplication:
?? tells us that if A has n members and B has m members then A × B has
n ·m members, so our definition simply generalises the idea to transfinite mul-
tiplication. Exponentiation is similar: we are simply generalising the thought
from the finite to the transfinite. Indeed, in certain ways, transfinite cardinal
arithmetic looks much more like “ordinary” arithmetic than does transfinite
ordinal arithmetic:

Proposition card-arithmetic.2.sth:card-arithmetic:opps:

cardplustimescommute

⊕ and ⊗ are commutative and associative.

Proof. For commutativity, by ?? it suffices to observe that (a t b) ≈ (b t a)
and (a× b) ≈ (b× a). We leave associativity as an exercise.
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Problem card-arithmetic.2. Prove that ⊕ and ⊗ are associative.

Proposition card-arithmetic.3. A is infinite iff |A| ⊕ 1 = 1⊕ |A| = |A|.

Proof. As in ??, from ?? and ??.

This explains why we need to use different symbols for ordinal versus car-
dinal addition/multiplication: these are genuinely different operations. This
next pair of results shows that ordinal versus cardinal exponentiation are also
different operations. (Recall that ?? entails that 2 = {0, 1}):

Lemma card-arithmetic.4. sth:card-arithmetic:opps:

lem:SizePowerset2Exp

|℘(A)| = 2|A|, for any A.

Proof. For each subset B ⊆ A, let χB ∈ A2 be given by:

χB(x) :=

{
1 if x ∈ B
0 otherwise.

Now let f(B) = χB ; this defines a bijection f : ℘(A) → A2. So ℘(A) ≈ A2.
Hence ℘(A) ≈ |A|2, so that |℘(A)| =

∣∣|A|2∣∣ = 2|A|.

This snappy proof essentially subsumes the discussion of ??. There, we
showed how to “reduce” the uncountability of ℘(ω) to the uncountability of
the set of infinite binary strings, Bω. In effect, Bω is just ω2; and the preceding
proof showed that the reasoning we went through in ?? will go through using
any set A in place of ω. The result also yields a quick fact about cardinal
exponentiation:

Corollary card-arithmetic.5. sth:card-arithmetic:opps:

cantorcor

a < 2a for any cardinal a.

Proof. From Cantor’s Theorem (??) and Lemma card-arithmetic.4.

So ω < 2ω. But note: this is a result about cardinal exponentiation. It
should be contrasted with ordinal exponentation, since in the latter case ω =
2(ω) (see ??).

Whilst we are on the topic of cardinal exponentiation, we can also be a bit
more precise about the “way” in which R is non-enumerable.

Theorem card-arithmetic.6. sth:card-arithmetic:opps:

continuumis2aleph0

|R| = 2ω

Proof skeleton. There are plenty of ways to prove this. The most straightfor-
ward is to argue that ℘(ω) � R and R � ℘(ω), and then use Schröder-Bernstein
to infer that R ≈ ℘(ω), and Lemma card-arithmetic.4 to infer that |R| = 2ω.
We leave it as an (illuminating) exercise for the reader to define injections
f : ℘(ω)→ R and g : R→ ℘(ω).

Problem card-arithmetic.3. Complete the proof of Theorem card-arithmetic.6,
by showing that ℘(ω) � R and R � ℘(ω).
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card-arithmetic.2 Simplifying Addition and
Multiplication

sth:card-arithmetic:simp:
sec

It turns out that transfinite cardinal addition and multiplication is extremely
easy. This follows from the fact that cardinals are (certain) ordinals, and so
well-ordered, and so can be manipulated in a certain way. Showing this, though,
is not so easy. To start, we need a tricksy definition:

Definition card-arithmetic.7. We define a canonical ordering, C, on pairs
of ordinals, by stipulating that 〈α1, α2〉C 〈β1, β2〉 iff either:

1. max(α1, α2) < max(β1, β2); or

2. max(α1, α2) = max(β1, β2) and α1 < β1; or

3. max(α1, α2) = max(β1, β2) and α1 = β1 and α2 < β2

Lemma card-arithmetic.8. 〈α× α,C〉 is a well-order, for any ordinal α.1

Proof. Evidently C is connected on α × α. For suppose that neither 〈α1, α2〉
nor 〈β1, β2〉 is C-less than the other. Then max(α1, α2) = max(β1, β2) and
α1 = β1 and α2 = β2, so that 〈α1, α2〉 = 〈β1, β2〉.

To show well-ordering, let X ⊆ α× α be non-empty. Since α is an ordinal,
some δ is the least member of {max(γ1, γ2) : 〈γ1, γ2〉 ∈ X}. Now discard
all pairs from {〈γ1, γ2〉 ∈ X : max(γ1, γ2) = δ} except those with least first
coordinate; from among these, the pair with least second coordinate is the
C-least element of X.

Now for a teensy, simple observation:

Proposition card-arithmetic.9.sth:card-arithmetic:simp:

simplecardproduct

If α ≈ β, then α× α ≈ β × β.

Proof. Just let f : α→ β induce 〈γ1, γ2〉 7→ 〈f(γ1), f(γ2)〉.

And now we will put all this to work, in proving a crucial lemma:

Lemma card-arithmetic.10.sth:card-arithmetic:simp:

alphatimesalpha

α ≈ α× α, for any infinite ordinal α

Proof. For reductio, let α be the least infinite ordinal for which this is false. ??
shows that ω ≈ ω×ω, so ω ∈ α. Moreover, α is a cardinal: suppose otherwise,
for reductio; then |α| ∈ α, so that |α| ≈ |α| × |α|, by hypothesis; and |α| ≈ α
by definition; so that α ≈ α× α by Proposition card-arithmetic.9.

Now, for each 〈γ1, γ2〉 ∈ α× α, consider the segment:

Seg(γ1, γ2) = {〈δ1, δ2〉 ∈ α× α : 〈δ1, δ2〉C 〈γ1, γ2〉}

1Cf. the naughtiness described in the footnote to ??.
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Let γ = max(γ1, γ2). When γ is infinite, observe:

Seg(γ1, γ2) - ((γ + 1) · (γ + 1)), by the first clause defining C

≈ (γ · γ), by ?? and Proposition card-arithmetic.9

≈ γ, by the induction hypothesis

≺ α, since α is a cardinal

So ord(α × α,C) ≤ α, and hence α × α � α. Since of course α � α × α, the
result follows by Schröder-Bernstein.

Finally, we get to our simplifying result:

Theorem card-arithmetic.11. sth:card-arithmetic:simp:

cardplustimesmax

If a, b are infinite cardinals, a⊗b = a⊕b =
max(a, b).

Proof. Without loss of generality, suppose a = max(a, b). Then invoking
Lemma card-arithmetic.10, a⊗ a = a ≤ a⊕ b ≤ a⊕ a ≤ a⊗ a.

Similarly, if a is infinite, an a-sized union of ≤ a-sized sets has size ≤ a:

Proposition card-arithmetic.12. sth:card-arithmetic:simp:

kappaunionkappasize

Let a be an infinite cardinal. For each

ordinal β ∈ a, let Xβ be a set with |Xβ | ≤ a. Then
∣∣∣⋃β∈aXβ

∣∣∣ ≤ a.

Proof. For each β ∈ a, fix an injection fβ : Xβ → a. Define an injection
g :
⋃
β∈aXβ → a × a by g(v) = 〈β, fβ(v)〉, where v ∈ Xβ and v /∈ Xγ for any

γ ∈ β. Now
⋃
β∈aXβ � a× a ≈ a by Theorem card-arithmetic.11.

card-arithmetic.3 Some Simplification with Cardinal
Exponentiation

sth:card-arithmetic:expotough:
sec

Whilst defining C was a little involved, the upshot is a useful result concerning
cardinal addition and multiplication, Theorem card-arithmetic.11. Transfinite
exponentiation, however, cannot be simplified so straightforwardly. To explain
why, we start with a result which extends a familiar pattern from the finitary
case (though its proof at quite a high level of abstraction):

Proposition card-arithmetic.13. sth:card-arithmetic:expotough:

simplecardexpo

ab⊕c = ab⊗ac and (ab)c = ab⊗c, for any
cardinals a, b, c.

Proof. For the first claim, consider a function f : (bt c)→ a. Now “split this”,
by defining fb(β) = f(β, 0) for each β ∈ b, and fc(γ) = f(γ, 1) for each γ ∈ c.
The map f 7→ (fb × fc) is a bijection btca→ (ba× ca).

For the second claim, consider a function f : c → (ba); so for each γ ∈ c
we have some function f(γ) : b→ a. Now define f∗(β, γ) = (f(γ))(β) for each
〈β, γ〉 ∈ b× c. The map f 7→ f∗ is a bijection c(ba)→ b⊗ca.

Now, what we would like is an easy way to compute ab when we are dealing
with infinite cardinals. Here is a nice step in this direction:
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Proposition card-arithmetic.14.sth:card-arithmetic:expotough:

cardexpo2reduct

If 2 ≤ a ≤ b and b is infinite, then

ab = 2b

Proof.

2b ≤ ab, as 2 ≤ a

≤ (2a)b, by Lemma card-arithmetic.4

= 2a⊗b, by Proposition card-arithmetic.13

= 2b, by Theorem card-arithmetic.11

We should not really expect to be able to simplify this any further, since
b < 2b by Lemma card-arithmetic.4. However, this does not tell us what to
say about ab when b < a. Of course, if b is finite, we know what to do.

Proposition card-arithmetic.15. If a is infinite and n ∈ ω then an = a

Proof. an = a ⊗ a ⊗ . . . ⊗ a = a, by n − 1 applications of Theorem card-
arithmetic.11.

Additionally, in certain other cases, we can control the size of ab:

Proposition card-arithmetic.16. If 2 ≤ b < a ≤ 2b and b is infinite, then
ab = 2b

Proof. 2b ≤ ab ≤ (2b)b = 2b⊗b = 2b, reasoning as in Proposition card-
arithmetic.14.

But, beyond this point, things become rather more subtle.

card-arithmetic.4 The Continuum Hypothesis

sth:card-arithmetic:ch:
sec

The previous result hints (correctly) that cardinal exponentiation would be
quite easy, if infinite cardinals are guaranteed to “play straightforwardly” with
powers of 2, i.e., (by Lemma card-arithmetic.4) with taking powersets. But
we cannot assume that infinite cardinals do play nicely with powersets. This
section is dedicated to explaining all of this. (Although, to be honest, it’s more
of a gesture in the direction of something fascinating.)

We will start by introducing some nice notation.

Definition card-arithmetic.17. Where a⊕ is the least cardinal strictly greater
than a, we define two infinite sequences:

ℵ0 := ω i0 := ω

ℵα+1 := (ℵα)⊕ iα+1 := 2iα

ℵα :=
⋃
β<α

ℵβ iα :=
⋃
β<α

iβ when α is a limit ordinal.
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The definition of a⊕ is in order, since ?? tells us that, for each cardinal
a, there is some cardinal greater than a, and Transfinite Induction guarantees
that there is a least cardinal greater than a. The rest of the definition of a is
provided by transfinite recursion.

Cantor introduced this “ℵ” notation; this is aleph, the first letter in the
Hebrew alphabet and the first letter in the Hebrew word for “infinite”. Peirce
introduced the “i” notation; this is beth, which is the second letter in the
Hebrew alphabet.2 Now, these notations provide us with infinite cardinals.

Proposition card-arithmetic.18. Both ℵα and iα are cardinals, for every
ordinal α.

Proof. Both results hold by a simple transfinite induction. ℵ0 = i0 = ω is a
cardinal by ??. Assuming ℵα and iα are both cardinals, ℵα+1 and iα+1 are
explicitly defined as cardinals. And the union of a set of cardinals is a cardinal,
by ??.

Moreover, every infinite cardinal is an ℵ:

Proposition card-arithmetic.19. If a is an infinite cardinal, then a = ℵγ
for some γ.

Proof. By transfinite induction on cardinals. For induction, suppose that if
b < a then b = ℵγb . If a = b⊕ for some b, then a = ℵ⊕γb = ℵγb+1. If a is not
the successor of any cardinal, then since cardinals are ordinals a =

⋃
b<a b =⋃

b<a ℵγb , so a = ℵγ where γ =
⋃

b<a γb.

Since every infinite cardinal is an ℵ, this prompts us to ask: is every infinite
cardinal a i? Certainly if that were the case, then the infinite cardinals would
“play straightforwardly” with the operation of taking powersets. Indeed, we
would have the following:

General Continuum Hypothesis (GCH). ℵα = iα, for all α.

Moreover, if GCH held, then we could make some considerable simplifications
with cardinal exponentiation. In particular, we could show that when b < a,
the value of ab is trapped by a ≤ ab ≤ a⊕. We could then go on to give precise
conditions which determine which of the two possibilities obtains (i.e., whether
a = ab or ab = a⊕).3

But GCH is a hypothesis, not a theorem. In fact, Gödel (1938) proved that
if ZFC is consistent, then so is ZFC + GCH. But it later turned out that
we can equally add ¬GCH to ZFC. Indeed, consider the simplest non-trivial
instance of GCH, namely:

2Peirce used this notation in a letter to Cantor of December 1900. Unfortunately, Peirce
also gave a bad argument there that iα does not exist for α ≥ ω.

3The condition is dictated by cofinality.
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Continuum Hypothesis (CH). ℵ1 = i1.

Cohen (1963) proved that if ZFC is consistent then so is ZFC + ¬CH.
The Continuum Hypothesis is so-called, since “the continuum” is another

name for the real line, R. Theorem card-arithmetic.6 tells us that |R| = i1. So
the Continuum Hypothesis states that there is no cardinal between the cardi-
nality of the natural numbers, ℵ0 = i0, and the cardinality of the continuum,
i1.

Given the independence of (G)CH from ZFC, what should say about their
truth? Well, there is much to say. Indeed, and much fertile recent work in set
theory has been directed at investigating these issues. But two quick points
are certainly worth emphasising.

First: it does not immediately follow from these formal independence results
that either GCH or CH is indeterminate in truth value. After all, maybe we
just need to add more axioms, which strike us as natural, and which will settle
the question one way or another. Gödel himself suggested that this was the
right response.

Second: the independence of CH from ZFC is certainly striking, but it is
certainly not incredible (in the literal sense). The point is simply that, for
all ZFC tells us, moving from cardinals to their successors may involve a less
blunt tool than simply taking powersets.

With those two observations made, if you want to know more, you will now
have to turn to the various philosophers and mathematicians with horses in the
race. (Though you may want to start with the very nice discussion in Potter
2004, §15.6.)

card-arithmetic.5 ℵ-Fixed Points

sth:card-arithmetic:fix:
sec

In ??, we suggested that Replacement stands in need of justification, because
it forces the hierarchy to be rather tall. Having done some cardinal arithmetic,
we can give a little illustration of the height of the hierarchy.

Evidently 0 < ℵ0, and 1 < ℵ1, and 2 < ℵ2. . . and, indeed, the difference
in size only gets bigger with every step. So it is tempting to conjecture that
κ < ℵκ for every ordinal κ.

But this conjecture is false, given ZFC. In fact, we can easily prove that
there are ℵ-fixed-points, i.e., cardinals κ such that κ = ℵκ.

Proposition card-arithmetic.20.sth:card-arithmetic:fix:

alephfixed

There is an ℵ-fixed-point.

Proof. Using recursion, define:

κ0 = 0

κn+1 = ℵκn
κ =

⋃
n<ω

κn
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Now κ is a cardinal by ??. But now:

κ =
⋃
n<ω

κn+1 =
⋃
n<ω

ℵκn =
⋃
α<κ

ℵα = ℵκ

Boolos once wrote an article about exactly the ℵ-fixed-point we just con-
structed. After noting the existence of κ, at the start of his article, he said:

[κ is] a pretty big number, by the lights of those with no previous
exposure to set theory, so big, it seems to me, that it calls into
question the truth of any theory, one of whose assertions is the
claim that there are at least κ objects. (Boolos, 2000, p. 257)

And he ultimately concluded his paper by asking:

[do] we suspect that, however it may have been at the beginning of
the story, by the time we have come thus far the wheels are spinning
and we are no longer listening to a description of anything that is
the case? (Boolos, 2000, p. 268)

If we have, indeed, outrun “anything that is the case”, then we must point the
finger of blame directly at Replacement. For it is this axiom which allows our
proof to work. In which case, one assumes, Boolos would need to revisit the
claim he made, a few decades earlier, that Replacement has “no undesirable”
consequences (see ??).

But is the existence of κ so bad? It might help, here, to consider Russell’s
Tristram Shandy paradox. Tristram Shandy documents his life in his diary, but
it takes him a year to record a single day. With every passing year, Tristram
falls further and further behind: after one year, he has recorded only one day,
and has lived 364 days unrecorded days; after two years, he has only recorded
two days, and has lived 728 unrecorded days; after three years, he has only
recorded three days, and lived 1092 unrecorded days . . . 4 Still, if Tristram is
immortal, Tristram will manage to record every day, for he will record the nth
day on the nth year of his life. And so, “at the end of time”, Tristram will
have a complete diary.

Now: why is this so different from the thought that α is smaller than ℵα—
and indeed, increasingly, desperately smaller—up until κ, at which point, we
catch up, and κ = ℵκ?

Setting that aside, and assuming we accept ZFC, let’s close with a little
more fun concerning fixed-point constructions. The next three results establish,
intuitively, that there is a (non-trivial) point at which the hierarchy is as wide
as it is tall:

Proposition card-arithmetic.21. sth:card-arithmetic:fix:

bethfixed

There is a i-fixed-point, i.e., a κ such
that κ = iκ

4Forgetting about leap years.
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Proof. As in Proposition card-arithmetic.20, using “i” in place of “ℵ”.

Proposition card-arithmetic.22.sth:card-arithmetic:fix:

stagesize

|Vω+α| = iα. If ω · ω ≤ α, then |Vα| =
iα.

Proof. The first claim holds by a simple transfinite induction. The second
claim follows, since if ω · ω ≤ α then ω + α = α. To establish this, we use
facts about ordinal arithmetic from ??. First note that ω · ω = ω · (1 + ω) =
(ω · 1) + (ω · ω) = ω + (ω · ω). Now if ω · ω ≤ α, i.e., α = (ω · ω) + β for some
β, then ω + α = ω + ((ω · ω) + β) = (ω + (ω · ω)) + β = (ω · ω) + β = α.

Corollary card-arithmetic.23. There is a κ such that |Vκ| = κ.

Proof. Let κ be a i-fixed point, as given by Proposition card-arithmetic.21.
Clearly ω · ω < κ. So |Vκ| = iκ = κ by Proposition card-arithmetic.22.

There are as many stages beneath Vκ as there are elements of Vκ. Intuitively,
then, Vκ is as wide as it is tall. This is very Tristram-Shandy-esque: we move
from one stage to the next by taking powersets, thereby making our hierarchy
much bigger with each step. But, “in the end”, i.e., at stage κ, the hierarchy’s
width catches up with its height.

One might ask: How often does the hierarchy’s width match its height? The
answer is: As often as there are ordinals. But this needs a little explanation.

We define a term τ as follows. For any A, let τ0(A) = |A|, let τn+1(A) =
iκn , and let τ(A) =

⋃
n<ω κn. As in Proposition card-arithmetic.21, τ(A)

is a i-fixed point for any A, and trivially |A| < τ(A). So now consider this
recursive definition of k-fixed-points:5

k0 = 0

kα+1 = τ(kα)

kβ =
⋃
α<β

kα if β is a limit

The construction is defined for all ordinals. Intuitively, then, k is an injection
from the ordinals to i-fixed points. And, exactly as before, for any ordinal α,
the stage Vkα is as wide as it is tall.
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5We’re using the Hebrew letter “k”; it has no standard definition in set theory.

9



Bibliography

Boolos, George. 2000. Must we believe in set theory? In Between Logic and
Intuition: Essays in Honor of Charles Parsons, eds. Gila Sher and Richard
Tieszen, 257–68. Cambridge: Cambridge University Press.

Cohen, Paul J. 1963. The independence of the continuum hypothesis. Proceed-
ings of the National Academy of Sciences of the United States of America
24: 556–557.
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