Chapter udf

Syntax and Semantics

Basic syntax and semantics for SOL covered so far. As a chapter it’s too short. Substitution for second-order variables has to be covered to be able to talk about derivation systems for SOL, and there’s some subtle issues there.

syn.1 Introduction

In first-order logic, we combine the non-logical symbols of a given language, i.e., its constant symbols, function symbols, and predicate symbols, with the logical symbols to express things about first-order structures. This is done using the notion of satisfaction, which relates a structure \mathcal{M}, together with a variable assignment s, and a formula φ: $\mathcal{M}, s \models \varphi$ holds iff what φ expresses when its constant symbols, function symbols, and predicate symbols are interpreted as \mathcal{M} says, and its free variables are interpreted as s says, is true. The interpretation of the identity predicate $=$ is built into the definition of $\mathcal{M}, s \models \varphi$, as is the interpretation of \forall and \exists. The former is always interpreted as the identity relation on the domain $|\mathcal{M}|$ of the structure, and the quantifiers are always interpreted as ranging over the entire domain. But, crucially, quantification is only allowed over elements of the domain, and so only object variables are allowed to follow a quantifier.

In second-order logic, both the language and the definition of satisfaction are extended to include free and bound function and predicate variables, and quantification over them. These variables are related to function symbols and predicate symbols the same way that object variables are related to constant symbols. They play the same role in the formation of terms and formulas of second-order logic, and quantification over them is handled in a similar way. In the standard semantics, the second-order quantifiers range over all possible objects of the right type (n-place functions from $|\mathcal{M}|$ to $|\mathcal{M}|$ for function variables, n-place relations for predicate variables). For
instance, while \(\forall v_0 (P^1_0(v_0) \lor \neg P^1_0(v_0)) \) is a formula in both first- and second-order logic, in the latter we can also consider \(\forall V^1_0 \forall v_0 (V^1_0(v_0) \lor \neg V^1_0(v_0)) \) and \(\exists V^1_0 \forall v_0 (V^1_0(v_0) \lor \neg V^1_0(v_0)) \). Since these contain no free variables, they are sentences of second-order logic. Here, \(V^1_0 \) is a second-order 1-place predicate variable. The allowable interpretations of \(V^1_0 \) are the same that we can assign to a 1-place predicate symbol like \(P^1_0 \), i.e., subsets of \(|\mathcal{M}|\). Quantification over them then amounts to saying that \(\forall v_0 (V^1_0(v_0) \lor \neg V^1_0(v_0)) \) holds for all ways of assigning a subset of \(|\mathcal{M}|\) as the value of \(V^1_0 \), or for at least one. Since every set either contains or fails to contain a given object, both are true in any structure.

syn.2 Terms and Formulas

Like in first-order logic, expressions of second-order logic are built up from a basic vocabulary containing variables, constant symbols, predicate symbols and sometimes function symbols. From them, together with logical connectives, quantifiers, and punctuation symbols such as parentheses and commas, terms and formulas are formed. The difference is that in addition to variables for objects, second-order logic also contains variables for relations and functions, and allows quantification over them. So the logical symbols of second-order logic are those of first-order logic, plus:

1. A denumerable set of second-order relation variables of every arity \(n \): \(V^n_0, V^n_1, V^n_2, \ldots \)

2. A denumerable set of second-order function variables: \(u^n_0, u^n_1, u^n_2, \ldots \)

Just as we use \(x, y, z \) as meta-variables for first-order variables \(v_i \), we’ll use \(X, Y, Z \), etc., as metavariables for \(V_i^n \) and \(u, v \), etc., as meta-variables for \(u^n_i \).

The non-logical symbols of a second-order language are specified the same way a first-order language is: by listing its constant symbols, function symbols, and predicate symbols.

In first-order logic, the identity predicate \(= \) is usually included. In first-order logic, the non-logical symbols of a language \(\mathcal{L} \) are crucial to allow us to express anything interesting. There are of course sentences that use no non-logical symbols, but with only \(= \) it is hard to say anything interesting. In second-order logic, since we have an unlimited supply of relation and function variables, we can say anything we can say in a first-order language even without a special supply of non-logical symbols.

Definition syn.1 (Second-order Terms). The set of second-order terms of \(\mathcal{L} \), \(\text{Trm}^2(\mathcal{L}) \), is defined by adding to ?? the clause

1. If \(u \) is an \(n \)-place function variable and \(t_1, \ldots, t_n \) are terms, then \(u(t_1, \ldots, t_n) \) is a term.
So, a second-order term looks just like a first-order term, except that where a first-order term contains a function symbol f^n, a second-order term may contain a function variable u^n in its place.

Definition syn.2 (Second-order formula). The set of second-order formulas $\text{Frm}_2(L)$ of the language L is defined by adding to $\text{Frm}_1(L)$ the clauses

1. If X is an n-place predicate variable and t_1, \ldots, t_n are second-order terms of L, then $X(t_1, \ldots, t_n)$ is an atomic formula.

2. If φ is a formula and u is a function variable, then $\forall u \varphi$ is a formula.

3. If φ is a formula and X is a predicate variable, then $\forall X \varphi$ is a formula.

4. If φ is a formula and u is a function variable, then $\exists u \varphi$ is a formula.

5. If φ is a formula and X is a predicate variable, then $\exists X \varphi$ is a formula.

syn.3 Satisfaction

To define the satisfaction relation $\mathcal{M}, s \models \varphi$ for second-order formulas, we have to extend the definitions to cover second-order variables. The notion of a structure is the same for second-order logic as it is for first-order logic. There is only a difference for variable assignments s: these now must not just provide values for the first-order variables, but also for the second-order variables.

Definition syn.3 (Variable Assignment). A variable assignment s for a structure \mathcal{M} is a function which maps each

1. object variable v_i to an element of $|\mathcal{M}|$, i.e., $s(v_i) \in |\mathcal{M}|$

2. n-place relation variable V^n_i to an n-place relation on $|\mathcal{M}|$, i.e., $s(V^n_i) \subseteq |\mathcal{M}|^n$;

3. n-place function variable u^n_i to an n-place function from $|\mathcal{M}|$ to $|\mathcal{M}|$, i.e., $s(u^n_i) : |\mathcal{M}|^n \to |\mathcal{M}|$.

A structure assigns a value to each constant symbol and function symbol, and a second-order variable assignment assigns objects and functions to each object and function variable. Together, they let us assign a value to every term.

Definition syn.4 (Value of a Term). If t is a term of the language L, \mathcal{M} is a structure for L, and s is a variable assignment for \mathcal{M}, the value $\text{Var}_2^{\mathcal{M}}(t)$ is defined as for first-order terms, plus the following clause:

$t \equiv u(t_1, \ldots, t_n)$:

$\text{Val}_2^{\mathcal{M}}(t) = s(u)(\text{Val}_2^{\mathcal{M}}(t_1), \ldots, \text{Val}_2^{\mathcal{M}}(t_n))$.

Syntax-and-semantics rev: 788b9aa (2022-03-22) by OLP / CC-BY 3
Definition syn.5 (x-Variant). If \(s \) is a variable assignment for a structure \(\mathcal{M} \), then any variable assignment \(s' \) for \(\mathcal{M} \) which differs from \(s \) at most in what it assigns to \(x \) is called an \(x \)-variant of \(s \). If \(s' \) is an \(x \)-variant of \(s \) we write \(s' \sim_x s \). (Similarly for second-order variables \(X \) or \(u \).)

Definition syn.6. If \(s \) is a variable assignment for a structure \(\mathcal{M} \) and \(m \in |\mathcal{M}| \), then the assignment \(s[m/x] \) is the variable assignment defined by
\[
s[m/y] = \begin{cases} m & \text{if } y \equiv x \\ s(y) & \text{otherwise}, \end{cases}
\]
If \(X \) is an \(n \)-place relation variable and \(M \subseteq |\mathcal{M}|^n \), then \(s[M/X] \) is the variable assignment defined by
\[
s[M/y] = \begin{cases} M & \text{if } y \equiv X \\ s(y) & \text{otherwise}. \end{cases}
\]
If \(u \) is an \(n \)-place function variable and \(f : |\mathcal{M}|^n \to |\mathcal{M}| \), then \(s[f/u] \) is the variable assignment defined by
\[
s[f/y] = \begin{cases} f & \text{if } y \equiv u \\ s(y) & \text{otherwise}. \end{cases}
\]
In each case, \(y \) may be any first- or second-order variable.

Definition syn.7 (Satisfaction). For second-order formulas \(\varphi \), the definition of satisfaction is like ?? with the addition of:

1. \(\varphi \equiv X^n(t_1, \ldots, t_n) : \mathcal{M}, s \models \varphi \iff \langle \text{Val}_s^\mathcal{M}(t_1), \ldots, \text{Val}_s^\mathcal{M}(t_n) \rangle \in s(X^n) \).
2. \(\varphi \equiv \forall X \psi : \mathcal{M}, s \models \varphi \iff \text{for every } M \subseteq |\mathcal{M}|^n, \mathcal{M}, s[M/X] \models \psi \).
3. \(\varphi \equiv \exists X \psi : \mathcal{M}, s \models \varphi \iff \text{for at least one } M \subseteq |\mathcal{M}|^n \text{ so that } \mathcal{M}, s[M/X] \models \psi \).
4. \(\varphi \equiv \forall u \psi : \mathcal{M}, s \models \varphi \iff \text{for every } f : |\mathcal{M}|^n \to |\mathcal{M}|, \mathcal{M}, s[f/u] \models \psi \).
5. \(\varphi \equiv \exists u \psi : \mathcal{M}, s \models \varphi \iff \text{for at least one } f : |\mathcal{M}|^n \to |\mathcal{M}| \text{ so that } \mathcal{M}, s[f/u] \models \psi \).

Example syn.8. Consider the formula \(\forall z (X(z) \leftrightarrow \neg Y(z)) \). It contains no second-order quantifiers, but does contain the second-order variables \(X \) and \(Y \) (here understood to be one-place). The corresponding first-order sentence \(\forall z (P(z) \leftrightarrow \neg R(z)) \) says that whatever falls under the interpretation of \(P \) does not fall under the interpretation of \(R \) and vice versa. In a structure, the interpretation of a predicate symbol \(P \) is given by the interpretation \(P^\mathcal{M} \). But for second-order variables like \(X \) and \(Y \), the interpretation is provided, not by the structure itself, but by a variable assignment. Since the second-order formula

\[syntax-and-semantics \text{ rev. 788b9aa (2022-03-22) by OLP / CC–BY } \]
is not a sentence (it includes free variables X and Y), it is only satisfied relative to a structure \mathfrak{M} together with a variable assignment s.

$\mathfrak{M}, s \vDash \forall z (X(z) \leftrightarrow \neg Y(z))$ whenever the elements of $s(X)$ are not elements of $s(Y)$, and vice versa, i.e., iff $s(Y) = |\mathfrak{M}| \setminus s(X)$. For instance, take $|\mathfrak{M}| = \{1, 2, 3\}$. Since no predicate symbols, function symbols, or constant symbols are involved, the domain of \mathfrak{M} is all that is relevant. Now for $s_1(X) = \{1, 2\}$ and $s_1(Y) = \{3\}$, we have $\mathfrak{M}, s_1 \vDash \forall z (X(z) \leftrightarrow \neg Y(z))$.

By contrast, if we have $s_2(X) = \{1, 2\}$ and $s_2(Y) = \{2, 3\}$, $\mathfrak{M}, s_2 \nvDash \forall z (X(z) \leftrightarrow \neg Y(z))$. That’s because $\mathfrak{M}, s_2[2/z] \nvDash X(z)$ (since 2 $\in s_2[2/z](X)$) but $\mathfrak{M}, s_2[2/z] \nvDash \neg Y(z)$ (since also 2 $\in s_2[2/z](Y)$).

Example syn.9. $\mathfrak{M}, s \vDash \exists Y (\exists y Y(y) \land \forall z (X(z) \leftrightarrow \neg Y(z)))$ if there is an $N \subseteq |\mathfrak{M}|$ such that $\mathfrak{M}, s|N/Y \vDash (\exists y Y(y) \land \forall z (X(z) \leftrightarrow \neg Y(z)))$. And that is the case for any $N \neq \emptyset$ (so that $\mathfrak{M}, s|N/Y \vDash \exists y Y(y)$) and, as in the previous example, $M = |\mathfrak{M}| \setminus s(X)$. In other words, $\mathfrak{M}, s \vDash \exists Y (\exists y Y(y) \land \forall z (X(z) \leftrightarrow \neg Y(z)))$ iff $|\mathfrak{M}| \setminus s(X)$ is non-empty, i.e., $s(X) \neq |\mathfrak{M}|$. So, the formula is satisfied, e.g., if $|\mathfrak{M}| = \{1, 2, 3\}$ and $s(X) = \{1\}$, but not if $s(X) = \{1, 2, 3\} = |\mathfrak{M}|$.

Since the formula is not satisfied whenever $s(X) = |\mathfrak{M}|$, the sentence

$$\forall X \exists Y (\exists y Y(y) \land \forall z (X(z) \leftrightarrow \neg Y(z)))$$

is never satisfied: For any structure \mathfrak{M}, the assignment $s(X) = |\mathfrak{M}|$ will make the sentence false. On the other hand, the sentence

$$\exists X \exists Y (\exists y Y(y) \land \forall z (X(z) \leftrightarrow \neg Y(z)))$$

is satisfied relative to any assignment s, since we can always find $M \subseteq |\mathfrak{M}|$ but $M \neq |\mathfrak{M}|$ (e.g., $M = \emptyset$).

Example syn.10. The second-order sentence $\forall X \forall y X(y)$ says that every 1-place relation, i.e., every property, holds of every object. That is clearly never true, since in every \mathfrak{M}, for a variable assignment s with $s(X) = \emptyset$, and $s(y) = a \in |\mathfrak{M}|$ we have $\mathfrak{M}, s \nvDash X(y)$. This means that $\varphi \rightarrow \forall X \forall y X(y)$ is equivalent in second-order logic to $\neg \varphi$, that is: $\mathfrak{M} \vDash \varphi \rightarrow \forall X \forall y X(y)$ iff $\mathfrak{M} \vDash \neg \varphi$. In other words, in second-order logic we can define \neg using \forall and \rightarrow.

Problem syn.1. Show that in second-order logic \forall and \rightarrow can define the other connectives:

1. Prove that in second-order logic $\varphi \land \psi$ is equivalent to $\forall X (\varphi \rightarrow (\psi \rightarrow \forall z X(x))) \rightarrow \forall x X(x)$.

2. Find a second-order formula using only \forall and \rightarrow equivalent to $\varphi \lor \psi$.

syn.4 Semantic Notions
The central logical notions of validity, entailment, and satisfiability are defined the same way for second-order logic as they are for first-order logic, except that the underlying satisfaction relation is now that for second-order formulas. A second-order sentence, of course, is a formula in which all variables, including predicate and function variables, are bound.

Definition syn.11 (Validity). A sentence \(\varphi \) is valid, \(\models \varphi \), iff \(M \models \varphi \) for every structure \(M \).

Definition syn.12 (Entailment). A set of sentences \(\Gamma \) entails a sentence \(\varphi \), \(\Gamma \models \varphi \), iff for every structure \(M \) with \(M \models \Gamma \), \(M \models \varphi \).

Definition syn.13 (Satisfiability). A set of sentences \(\Gamma \) is satisfiable if \(M \models \Gamma \) for some structure \(M \). If \(\Gamma \) is not satisfiable it is called unsatisfiable.

5 Expressive Power

Quantification over second-order variables is responsible for an immense increase in the expressive power of the language over that of first-order logic. Second-order existential quantification lets us say that functions or relations with certain properties exists. In first-order logic, the only way to do that is to specify a non-logical symbol (i.e., a function symbol or predicate symbol) for this purpose. Second-order universal quantification lets us say that all subsets of, relations on, or functions from the domain to the domain have a property.

In first-order logic, we can only say that the subsets, relations, or functions assigned to one of the non-logical symbols of the language have a property. And when we say that subsets, relations, functions exist that have a property, or that all of them have it, we can use second-order quantification in specifying this property as well. This lets us define relations not definable in first-order logic, and express properties of the domain not expressible in first-order logic.

Definition syn.14. If \(M \) is a structure for a language \(L \), a relation \(R \subseteq |M|^2 \) is definable in \(L \) if there is some formula \(\varphi_R(x, y) \) with only the variables \(x \) and \(y \) free, such that \(R(a, b) \) holds (i.e., \(\langle a, b \rangle \in R \)) iff \(M, s \models \varphi_R(x, y) \) for \(s(x) = a \) and \(s(y) = b \).

Example syn.15. In first-order logic we can define the identity relation \(\text{Id}_{|M|} \) (i.e., \(\{ \langle a, a \rangle : a \in |M| \} \)) by the formula \(x = y \). In second-order logic, we can define this relation without \(= \). For if \(a \) and \(b \) are the same element of \(|M| \), then they are elements of the same subsets of \(|M| \) (since sets are determined by their elements). Conversely, if \(a \) and \(b \) are different, then they are not elements of the same subsets: e.g., \(a \in \{ a \} \) but \(b \notin \{ a \} \) if \(a \neq b \). So “being elements of the same subsets of \(|M| \)” is a relation that holds of \(a \) and \(b \) iff \(a = b \). It is a relation that can be expressed in second-order logic, since we can quantify over all subsets of \(|M| \). Hence, the following formula defines \(\text{Id}_{|M|} \):

\[
\forall X \ (X(x) \leftrightarrow X(y))
\]
Problem syn.2. Show that $\forall X \ (X(x) \to X(y))$ (note: \to not \leftrightarrow) defines Id_M.

Example syn.16. If R is a two-place predicate symbol, $R^\mathfrak{M}$ is a two-place relation on \mathfrak{M}. Perhaps somewhat confusingly, we'll use R as the predicate symbol for R and for the relation $R^\mathfrak{M}$ itself. The transitive closure R^* of R is the relation that holds between a and b iff for some c_1, \ldots, c_k, $R(a, c_1), R(c_1, c_2), \ldots, R(c_k, b)$ holds. This includes the case if $k = 0$, i.e., if $R(a, b)$ holds, so does $R^*(a, b)$. This means that $R \subseteq R^*$. In fact, R^* is the smallest relation that includes R and that is transitive. We can say in second-order logic that X is a transitive relation that includes R:

$$
\psi_R(X) \equiv \forall x \forall y (R(x, y) \to X(x, y)) \land \\
\forall x \forall y \forall z ((X(x, y) \land X(y, z)) \to X(x, z)).
$$

The first conjunct says that $R \subseteq X$ and the second that X is transitive.

To say that X is the smallest such relation is to say that it is itself included in every relation that includes R and is transitive. So we can define the transitive closure of R by the formula

$$
R^*(X) \equiv \psi_R(X) \land \forall Y (\psi_R(Y) \to \forall x \forall y (X(x, y) \to Y(x, y))).
$$

We have $\mathfrak{M}, s \vDash R^*(X)$ iff $s(X) = R^*$. The transitive closure of R cannot be expressed in first-order logic.

syn.6 Describing Infinite and Enumerable Domains

A set M is (Dedekind) infinite iff there is an injective function $f : M \to M$ which is not surjective, i.e., with $\text{dom}(f) \neq M$. In first-order logic, we can consider a one-place function symbol f and say that the function $f^\mathfrak{M}$ assigned to it in a structure \mathfrak{M} is injective and $\text{ran}(f) \neq |\mathfrak{M}|$:

$$
\forall x \forall y (f(x) = f(y) \to x = y) \land \exists y \forall x y \neq f(x).
$$

If \mathfrak{M} satisfies this sentence, $f^\mathfrak{M} : |\mathfrak{M}| \to |\mathfrak{M}|$ is injective, and so $|\mathfrak{M}|$ must be infinite. If $|\mathfrak{M}|$ is infinite, and hence such a function exists, we can let $f^\mathfrak{M}$ be that function and \mathfrak{M} will satisfy the sentence. However, this requires that our language contains the non-logical symbol f we use for this purpose. In second-order logic, we can simply say that such a function exists. This no-longer requires f, and we obtain the sentence in pure second-order logic

$$
\text{Inf} \equiv \exists u (\forall x \forall y (u(x) = u(y) \to x = y) \land \exists y \forall x y \neq u(x)).
$$

$\mathfrak{M} \vDash \text{Inf}$ iff $|\mathfrak{M}|$ is infinite. We can then define $\text{Fin} \equiv \neg \text{Inf}$; $\mathfrak{M} \vDash \text{Fin}$ iff $|\mathfrak{M}|$ is finite. No single sentence of pure first-order logic can express that the domain is infinite although an infinite set of them can. There is no set of sentences of pure first-order logic that is satisfied in a structure iff its domain is finite.
Proposition syn.17. \(M \models \text{Inf} \; \text{iff} \; |M| \) is infinite.

Proof. \(M \models \text{Inf} \; \text{iff} \; s \models \forall x \forall y (u(x) = u(y) \rightarrow x = y) \land \exists y \forall x \; y \neq u(x) \) for some \(s \). If it does, \(s(u) \) is an injective function, and some \(y \in |M| \) is not in the domain of \(s(u) \). Conversely, if there is an injective \(f : |M| \rightarrow |M| \) with \(\text{dom}(f) \neq |M| \), then \(s(u) = f \) is such a variable assignment.

A set \(M \) is enumerable if there is an enumeration

\[
m_0, m_1, m_2, \ldots
\]
of its elements (without repetitions but possibly finite). Such an enumeration exists iff there is an element \(z \in M \) and a function \(f : M \rightarrow M \) such that \(z, f(z), f(f(z)), \ldots \), are all the elements of \(M \). For if the enumeration exists, \(z = m_0 \) and \(f(m_k) = m_{k+1} \) (or \(f(m_k) = m_k \) if \(m_k \) is the last element of the enumeration) are the requisite element and function. On the other hand, if such a \(z \) and \(f \) exist, then \(z, f(z), f(f(z)), \ldots \), is an enumeration of \(M \), and \(M \) is enumerable. We can express the existence of \(z \) and \(f \) in second-order logic to produce a sentence true in a structure iff the structure is enumerable:

\[
\text{Count} \equiv \exists z \exists u \forall X \; ((X(z) \land \forall x (X(x) \rightarrow X(u(x)))) \rightarrow \forall x \; X(x))
\]

Proposition syn.18. \(M \models \text{Count} \; \text{iff} \; |M| \) is enumerable.

Proof. Suppose \(|M| \) is enumerable, and let \(m_0, m_1, \ldots \), be an enumeration. By removing repetitions we can guarantee that no \(m_k \) appears twice. Define \(f(m_k) = m_{k+1} \) and let \(s(z) = m_0 \) and \(s(u) = f \). We show that

\[
M, s \models \forall X \; ((X(z) \land \forall x (X(x) \rightarrow X(u(x)))) \rightarrow \forall x \; X(x))
\]

Suppose \(M \subseteq |M| \) is arbitrary. Suppose further that \(M, s[M/X] \models (X(z) \land \forall x (X(x) \rightarrow X(u(x)))) \). Then \(s[M/X](z) \in M \) and whenever \(x \in M \), also \(s[M/X](u)(x) \in M \). In other words, since \(s[M/X] \sim_X s, m_0 \in M \) and if \(x \in M \) then \(f(x) \in M \), so \(m_0 \in M, m_1 = f(m_0) \in M, m_2 = f(f(m_0)) \in M, \) etc. Thus, \(M = |M| \), and so \(M, s[M/X] \models \forall x \; X(x) \). Since \(M \subseteq |M| \) was arbitrary, we are done: \(M \models \text{Count} \).

Now assume that \(M \models \text{Count} \), i.e.,

\[
M, s \models \forall X \; ((X(z) \land \forall x (X(x) \rightarrow X(u(x)))) \rightarrow \forall x \; X(x))
\]

for some \(s \). Let \(m = s(z) \) and \(f = s(u) \) and consider \(M = \{m, f(m), f(f(m)), \ldots \} \). \(M \) so defined is clearly enumerable. Then

\[
M, s[M/X] \models (X(z) \land \forall x (X(x) \rightarrow X(u(x)))) \rightarrow \forall x \; X(x)
\]

by assumption. Also, \(M, s[M/X] \models X(z) \) since \(M \models m = s[M/X](z) \), and also \(M, s[M/X] \models \forall x (X(x) \rightarrow X(u(x))) \) since whenever \(x \in M \) also \(f(x) \in M \). So, since both antecedent and conditional are satisfied, the consequent must also be: \(M, s[M/X] \models \forall x \; X(x) \). But that means that \(M = |M| \), and so \(|M| \) is enumerable since \(M \) is, by definition.
Problem syn.3. The sentence $\text{Inf} \land \text{Count}$ is true in all and only denumerable domains. Adjust the definition of Count so that it becomes a different sentence that directly expresses that the domain is denumerable, and prove that it does.

Photo Credits
Bibliography