The central logical notions of validity, entailment, and satisfiability are defined the same way for second-order logic as they are for first-order logic, except that the underlying satisfaction relation is now that for second-order formulas. A second-order sentence, of course, is a formula in which all variables, including predicate and function variables, are bound.

Definition syn.1 (Validity). A sentence φ is valid, $\models \varphi$, iff $M \models \varphi$ for every structure M.

Definition syn.2 (Entailment). A set of sentences Γ entails a sentence φ, $\Gamma \models \varphi$, iff for every structure M with $M \models \Gamma$, $M \models \varphi$.

Definition syn.3 (Satisfiability). A set of sentences Γ is satisfiable if $M \models \Gamma$ for some structure M. If Γ is not satisfiable it is called unsatisfiable.

Photo Credits

Bibliography