A set \(M \) is (Dedekind) infinite iff there is an injective function \(f: M \to M \) which is not surjective, i.e., with \(\text{dom}(f) \neq M \). In first-order logic, we can consider a one-place function symbol \(f \) and say that the function \(f^\mathfrak{M} \) assigned to it in a structure \(\mathfrak{M} \) is injective and \(\text{ran}(f) \neq |\mathfrak{M}| \):

\[
\forall x \forall y (f(x) = f(y) \to x = y) \land \exists y \forall x y \neq f(x).
\]

If \(\mathfrak{M} \) satisfies this sentence, \(f^\mathfrak{M}: |\mathfrak{M}| \to |\mathfrak{M}| \) is injective, and so \(|\mathfrak{M}| \) must be infinite. If \(|\mathfrak{M}| \) is infinite, and hence such a function exists, we can let \(f^\mathfrak{M} \) be that function and \(\mathfrak{M} \) will satisfy the sentence. However, this requires that our language contains the non-logical symbol \(f \) we use for this purpose. In second-order logic, we can simply say that such a function exists. This no-longer requires \(f \), and we obtain the sentence in pure second-order logic:

\[
\text{Inf} \equiv \exists u (\forall x \forall y (u(x) = u(y) \to x = y) \land \exists y \forall x y \neq u(x)).
\]

\(\mathfrak{M} \models \text{Inf} \) if \(|\mathfrak{M}| \) is infinite. We can then define \(\text{Fin} \equiv \neg \text{Inf} \); \(\mathfrak{M} \models \text{Fin} \) iff \(|\mathfrak{M}| \) is finite. No single sentence of pure first-order logic can express that the domain is infinite although an infinite set of them can. There is no set of sentences of pure first-order logic that is satisfied in a structure iff its domain is finite.

Proposition syn.1. \(\mathfrak{M} \models \text{Inf} \) iff \(|\mathfrak{M}| \) is infinite.

Proof. \(\mathfrak{M} \models \text{Inf} \iff \mathfrak{M} \models \forall x \forall y (u(x) = u(y) \to x = y) \land \exists y \forall x y \neq u(x) \) for some \(s \). If it does, \(s(u) \) is an injective function, and some \(y \in |\mathfrak{M}| \) is not in the domain of \(s(u) \). Conversely, if there is an injective \(f: |\mathfrak{M}| \to |\mathfrak{M}| \) with \(\text{dom}(f) \neq |\mathfrak{M}| \), then \(s(u) = f \) is such a variable assignment.

A set \(M \) is enumerable if there is an enumeration

\[
m_0, m_1, m_2, \ldots
\]

of its elements (without repetitions but possibly finite). Such an enumeration exists iff there is an element \(z \in M \) and a function \(f: M \to M \) such that \(z, f(z), f(f(z)), \ldots, \) are all the elements of \(M \). For if the enumeration exists, \(z = m_0 \) and \(f(m_k) = m_{k+1} \) (or \(f(m_k) = m_k \) if \(m_k \) is the last element of the enumeration) are the requisite element and function. On the other hand, if such a \(z \) and \(f \) exist, then \(z, f(z), f(f(z)), \ldots \) is an enumeration of \(M \), and \(M \) is enumerable. We can express the existence of \(z \) and \(f \) in second-order logic to produce a sentence true in a structure iff the structure is enumerable:

\[
\text{Count} \equiv \exists z \exists u \forall X ((X(z) \land \forall x (X(x) \to X(u(x)))) \to \forall x X(x))
\]

Proposition syn.2. \(\mathfrak{M} \models \text{Count} \) iff \(|\mathfrak{M}| \) is enumerable.
Proof. Suppose $|\mathcal{M}|$ is enumerable, and let m_0, m_1, \ldots, be an enumeration. By removing repetitions we can guarantee that no m_k appears twice. Define $f(m_k) = m_{k+1}$ and let $s(z) = m_0$ and $s(u) = f$. We show that $\mathcal{M}, s \models \forall X ((X(z) \land \forall x (X(x) \rightarrow X(u(x)))) \rightarrow \forall x X(x))$

Suppose $s' \sim_X s$ is arbitrary, and let $M = s'(X)$. Suppose further that $\mathcal{M}, s' \models (X(z) \land \forall x (X(x) \rightarrow X(u(x))))$. Then $s'(z) \in M$ and whenever $x \in M$, also $s'(u)(x) \in M$. In other words, since $s' \sim_X s$, $m_0 \in M$ and if $x \in M$ then $f(x) \in M$, so $m_0 \in M$, $m_1 = f(m_0) \in M$, $m_2 = f(f(m_0)) \in M$, etc. Thus, $M = |\mathcal{M}|$, and so $\mathcal{M}, s' \models \forall x X(x)$. Since s' was an arbitrary X-variant of s, we are done: $\mathcal{M} \models \text{Count}$.

Now assume that $\mathcal{M} \models \text{Count}$, i.e.,

$\mathcal{M}, s \models \forall X ((X(z) \land \forall x (X(x) \rightarrow X(u(x)))) \rightarrow \forall x X(x))$

for some s. Let $m = s(z)$ and $f = s(u)$ and consider $M = \{m, f(m), f(f(m)), \ldots\}$. Let s' be the X-variant of s with $s(X) = M$. Then

$\mathcal{M}, s' \models (X(z) \land \forall x (X(x) \rightarrow X(u(x)))) \rightarrow \forall x X(x)$

by assumption. Also, $\mathcal{M}, s' \models X(z)$ since $s'(X) = M \ni m = s'(z)$, and also $\mathcal{M}, s' \models \forall x (X(x) \rightarrow X(u(x)))$ since whenever $x \in M$ also $f(x) \in M$. So, since both antecedent and conditional are satisfied, the consequent must also be: $\mathcal{M}, s' \models \forall x X(x)$. But that means that $M = |\mathcal{M}|$, and so $|\mathcal{M}|$ is enumerable since M is, by definition. \qed

Problem syn.1. The sentence $\text{Inf} \land \text{Count}$ is true in all and only denumerable domains. Adjust the definition of Count so that it becomes a different sentence that directly expresses that the domain is denumerable, and prove that it does.

Photo Credits

Bibliography