set.1 Comparing Sets

sol:set:cmp:

Proposition set.1. The formula $\forall x (X(x) \to Y(x))$ defines the subset relation, i.e., $\mathfrak{M}, s \models \forall x (X(x) \to Y(x))$ iff $s(X) \subseteq S(y)$.

Proposition set.2. The formula $\forall x (X(x) \leftrightarrow Y(x))$ defines the identity relation on sets, i.e., $\mathfrak{M}, s \models \forall x (X(x) \leftrightarrow Y(x))$ iff s(X) = S(y).

Proposition set.3. The formula $\exists x \, X(x)$ defines the property of being non-empty, i.e., $\mathfrak{M}, s \models \exists x \, X(x) \text{ iff } s(X) \neq \emptyset$.

A set X is no larger than a set Y, $X \leq Y$, iff there is an injective function $f \colon X \to Y$. Since we can express that a function is injective, and also that its values for arguments in X are in Y, we can also define the relation of being no larger than on subsets of the domain.

Proposition set.4. The formula

$$\exists u \, (\forall x \, (X(x) \to Y(u(x))) \land \forall x \, \forall y \, (u(x) = u(y) \to x = y))$$

defines the relation of being no larger than.

Two sets are the same size, or "equinumerous," $X \approx Y$, iff there is a bijective function $f: X \to Y$.

Proposition set.5. The formula

$$\exists u \left(\forall x \left(X(x) \to Y(u(x)) \right) \land \\ \forall x \, \forall y \left(u(x) = u(y) \to x = y \right) \land \\ \forall y \left(Y(y) \to \exists x \left(X(x) \land y = u(x) \right) \right) \right)$$

defines the relation of being equinumerous with.

We will abbreviate these formulas, respectively, as $X\subseteq Y, X=Y, X\neq\emptyset$, $X\preceq Y$, and $X\approx Y$. (This may be slightly confusing, since we use the same notation when we speak informally about sets X and Y—but here the notation is an abbreviation for formulas in second-order logic involving one-place relation variables X and Y.)

Proposition set.6. The sentence $\forall X \forall Y ((X \leq Y \land Y \leq X) \rightarrow X \approx Y)$ is valid.

Proof. The is satisfied in a structure \mathfrak{M} if, for any subsets $X \subseteq |\mathfrak{X}|$ and $Y \subseteq |\mathfrak{M}|$, if $X \preceq Y$ and $Y \preceq X$ then $X \approx Y$. But this holds for any sets X and Y—it is the Schröder-Bernstein Theorem.

Photo Credits

Bibliography