set.1 Comparing Sets

Proposition set.1. The formula \(\forall x (X(x) \rightarrow Y(x)) \) defines the subset relation, i.e., \(\mathfrak{M}, s \models \forall x (X(x) \rightarrow Y(x)) \) iff \(s(X) \subseteq S(y) \).

Proposition set.2. The formula \(\forall x (X(x) \leftrightarrow Y(x)) \) defines the identity relation on sets, i.e., \(\mathfrak{M}, s \models \forall x (X(x) \leftrightarrow Y(x)) \) iff \(s(X) = S(y) \).

Proposition set.3. The formula \(\exists x X(x) \) defines the property of being non-empty, i.e., \(\mathfrak{M}, s \models \exists x X(x) \) iff \(s(X) \neq \emptyset \).

A set \(X \) is no larger than a set \(Y \), \(X \preceq Y \), iff there is an injective function \(f: X \rightarrow Y \). Since we can express that a function is injective, and also that its values for arguments in \(X \) are in \(Y \), we can also define the relation of being no larger than on subsets of the domain.

Proposition set.4. The formula
\[
\exists u (\forall x (X(x) \rightarrow Y(u(x)))) \land \forall x \forall y (u(x) = u(y) \rightarrow x = y))
\]
defines the relation of being no larger than.

Two sets are the same size, or “equinumerous,” \(X \approx Y \), iff there is a bijective function \(f: X \rightarrow Y \). Since we can express that a function is bijective, and also that its values for arguments in \(X \) are in \(Y \), we can also define the relation of being equinumerous.

Proposition set.5. The formula
\[
\exists u (\forall x (X(x) \rightarrow Y(u(x)))) \land \\
\forall x \forall y (u(x) = u(y) \rightarrow x = y)) \land \\
\forall y (Y(y) \rightarrow \exists x (X(x) \land y = u(x))))
\]
defines the relation of being equinumerous with.

We will abbreviate these formulas, respectively, as \(X \subseteq Y \), \(X = Y \), \(X \neq \emptyset \), \(X \preceq Y \), and \(X \approx Y \). (This may be slightly confusing, since we use the same notation when we speak informally about sets \(X \) and \(Y \)—but here the notation is an abbreviation for formulas in second-order logic involving one-place relation variables \(X \) and \(Y \).)

Proposition set.6. The sentence \(\forall X \forall Y ((X \preceq Y \land Y \preceq X) \rightarrow X \approx Y) \) is valid.

Proof. The is satisfied in a structure \(\mathfrak{M} \) if, for any subsets \(X \subseteq |X| \) and \(Y \subseteq |\mathfrak{M}| \), if \(X \preceq Y \) and \(Y \preceq X \) then \(X \approx Y \). But this holds for any sets \(X \) and \(Y \)—it is the Schröder-Bernstein Theorem. \(\square \)