met.1 Second-order Logic is not Axiomatizable

Theorem met.1. Second-order logic is undecidable.

Proof. A first-order sentence is valid in first-order logic iff it is valid in second-order logic, and first-order logic is undecidable. □

Theorem met.2. There is no sound and complete derivation system for second-order logic.

Proof. Let φ be a sentence in the language of arithmetic. $\mathfrak{M} \models \varphi$ iff $\text{PA}^2 \models \varphi$. Let P be the conjunction of the nine axioms of PA^2. $\text{PA}^2 \models \varphi$ iff $\models P \rightarrow \varphi$, i.e., $\mathfrak{M} \models P \rightarrow \varphi$. Now consider the sentence $\forall z \forall u \forall u' \forall u'' \forall L (P' \rightarrow \varphi')$ resulting by replacing 0 by z, t by the one-place function variable u, $+$ and \times by the two-place function-variables u' and u'', respectively, and $<$ by the two-place relation variable L and universally quantifying. It is a valid sentence of pure second-order logic iff the original sentence was valid iff $\text{PA}^2 \models \varphi$ iff $\mathfrak{M} \models \varphi$. Thus if there were a sound and complete proof system for second-order logic, we could use it to define a computable enumeration $f: \mathbb{N} \rightarrow \text{Sent}(\mathcal{L}_A)$ of the sentences true in \mathfrak{M}. This function would be representable in \mathbb{Q} by some first-order formula $\psi_f(x, y)$. Then the formula $\exists x \psi_f(x, y)$ would define the set of true first-order sentences of \mathfrak{M}, contradicting Tarski’s Theorem. □

Photo Credits

Bibliography