Second-order Logic is not Axiomatizable

Theorem met.1. Second-order logic is undecidable.

Proof. A first-order sentence is valid in first-order logic iff it is valid in second-order logic, and first-order logic is undecidable. □

Theorem met.2. There is no sound and complete derivation system for second-order logic.

Proof. Let \(\varphi \) be a sentence in the language of arithmetic. \(\mathfrak{N} \models \varphi \) iff \(\mathbf{PA}^2 \models \varphi \). Let \(P \) be the conjunction of the nine axioms of \(\mathbf{PA}^2 \). \(\mathbf{PA}^2 \models \varphi \) iff \(\models P \rightarrow \varphi \), i.e., \(\mathfrak{M} \models P \rightarrow \varphi \). Now consider the sentence \(\forall z \forall u \forall u' \forall u'' \forall L (P' \rightarrow \varphi') \) resulting by replacing \(0 \) by \(z \), \(\cdot \) by the one-place function variable \(u \), \(+ \) and \(\times \) by the two-place function-variables \(u' \) and \(u'' \), respectively, and \(< \) by the two-place relation variable \(L \) and universally quantifying. It is a valid sentence of pure second-order logic iff the original sentence was valid iff \(\mathbf{PA}^2 \models \varphi \) iff \(\mathfrak{N} \models \varphi \).

Thus if there were a sound and complete proof system for second-order logic, we could use it to define a computable enumeration \(f : \mathbb{N} \rightarrow \text{Sent}(\mathcal{L}_A) \) of the sentences true in \(\mathfrak{N} \). This function would be representable in \(\mathbb{Q} \) by some first-order formula \(\psi_f(x,y) \). Then the formula \(\exists x \psi_f(x,y) \) would define the set of true first-order sentences of \(\mathfrak{N} \), contradicting Tarski’s Theorem. □

Photo Credits

Bibliography