Recall that the theory \(\mathbf{PA} \) of Peano arithmetic includes the eight axioms of \(\mathbf{Q} \),

\[
\begin{align*}
\forall x x' &\neq 0 \\
\forall x \forall y (x' = y' \rightarrow x = y) \\
\forall x \forall y (x < y &\iff \exists z (x + z') = y) \\
\forall x (x + 0) &= x \\
\forall x \forall y (x + y') &= (x + y)' \\
\forall x (x \times 0) &= 0 \\
\forall x \forall y (x \times y') &= ((x \times y) + x)
\end{align*}
\]

plus all sentences of the form

\[
(\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x'))) \rightarrow \forall x \varphi(x)
\]

The latter is a “schema,” i.e., a pattern that generates infinitely many sentences of the language of arithmetic, one for each formula \(\varphi(x) \). We call this schema the (first-order) axiom schema of induction. In second-order Peano arithmetic \(\mathbf{PA}^2 \), induction can be stated as a single sentence. \(\mathbf{PA}^2 \) consists of the first eight axioms above plus the (second-order) induction axiom:

\[
\forall X (X(0) \land \forall x (X(x) \rightarrow X(x'))) \rightarrow \forall x X(x)
\]

It says that if a subset \(X \) of the domain contains \(0 \) and with any \(x \in |\mathfrak{M}| \) also contains \(X(x) \) (i.e., it is “closed under successor”) it contains everything in the domain (i.e., \(X = |\mathfrak{M}| \)).

The induction axiom guarantees that any structure satisfying it contains only those elements of \(|\mathfrak{M}| \) the axioms require to be there, i.e., the values of \(\pi \) for \(n \in \mathbb{N} \). A model of \(\mathbf{PA}^2 \) contains no non-standard numbers.

Theorem met.1. If \(\mathfrak{M} \models \mathbf{PA}^2 \) then \(|\mathfrak{M}| = \{ \text{Val}^\mathfrak{M}(M) : n \in \mathbb{N} \} \).

Proof. Let \(N = \{ \text{Val}^\mathfrak{M} (\pi) : n \in \mathbb{N} \} \), and suppose \(\mathfrak{M} \models \mathbf{PA}^2 \). Of course, for any \(n \in \mathbb{N} \), \(\text{Val}^\mathfrak{M} (\pi) \in |\mathfrak{M}| \), so \(N \subseteq |\mathfrak{M}| \).

Now for inclusion in the other direction. Consider a variable assignment \(s \) with \(s(X) = N \). By assumption,

\[
\begin{align*}
\mathfrak{M} &\models \forall X (X(o) \land \forall x (X(x) \rightarrow X(x'))) \rightarrow \forall x X(x), \\
\mathfrak{M}, s &\models (X(o) \land \forall x (X(x) \rightarrow X(x'))) \rightarrow \forall x X(x).
\end{align*}
\]

Consider the antecedent of this conditional. \(\text{Val}^\mathfrak{M} (o) \in N \), and so \(\mathfrak{M}, s \models X(o) \). The second conjunct, \(\forall x (X(x) \rightarrow X(x')) \) is also satisfied. For suppose \(x \in N \). By definition of \(N \), \(x = \text{Val}^\mathfrak{M} (\pi) \) for some \(n \). That gives \(\pi^\mathfrak{M} (x) = \text{Val}^\mathfrak{M} (n + 1) \in N \). So, \(\pi^\mathfrak{M} (x) \in N \).
We have that $\mathfrak{M}, s \models X(x) \land \forall x (X(x) \rightarrow X(x'))$. Consequently, $\mathfrak{M}, s \not\models \forall x X(x)$. But that means that for every $x \in |\mathfrak{M}|$ we have $x \in s(X) = N$. So, $|\mathfrak{M}| \subseteq N$.

Corollary met.2. Any two models of PA^2 are isomorphic.

Proof. By Theorem met.1, the domain of any model of PA^2 is exhausted by $\text{Val}^\mathfrak{M}(\pi)$. Any such model is also a model of Q. By ??, any such model is standard, i.e., isomorphic to \mathfrak{N}.

Above we defined PA^2 as the theory that contains the first eight arithmetical axioms plus the second-order induction axiom. In fact, thanks to the expressive power of second-order logic, only the first two of the arithmetical axioms plus induction are needed for second-order Peano arithmetic.

Proposition met.3. Let $\text{PA}^{2!}$ be the second-order theory containing the first two arithmetical axioms (the successor axioms) and the second-order induction axiom. $\text{\textgreater, }\text{+}, \text{and }\times$ are definable in $\text{PA}^{2!}$.

Proof. Exercise.

Problem met.1. Prove Proposition met.3.

Corollary met.4. $\mathfrak{M} \models \text{PA}^2$ iff $\mathfrak{M} \models \text{PA}^{2!}$.

Proof. Immediate from Proposition met.3.

Photo Credits

Bibliography