Chapter udf

Metatheory of Second-order Logic

met.1 Introduction

First-order logic has a number of nice properties. We know it is not decidable, but at least it is axiomatizable. That is, there are proof systems for first-order logic which are sound and complete, i.e., they give rise to a derivability relation \(\vdash \) with the property that for any set of sentences \(\Gamma \) and sentence \(Q \), \(\Gamma \models \varphi \) iff \(\Gamma \vdash \varphi \). This means in particular that the validities of first-order logic are computably enumerable. There is a computable function \(f : \mathbb{N} \to \text{Sent}(\mathcal{L}) \) such that the values of \(f \) are all and only the valid sentences of \(\mathcal{L} \). This is so because derivations can be enumerated, and those that derive a single sentence are then mapped to that sentence. Second-order logic is more expressive than first-order logic, and so it is in general more complicated to capture its validities. In fact, we’ll show that second-order logic is not only undecidable, but its validities are not even computably enumerable. This means there can be no sound and complete proof system for second-order logic (although sound, but incomplete proof systems are available and in fact are important objects of research).

First-order logic also has two more properties: it is compact (if every finite subset of a set \(\Gamma \) of sentences is satisfiable, \(\Gamma \) itself is satisfiable) and the Löwenheim-Skolem Theorem holds for it (if \(\Gamma \) has an infinite model it has a denumerable model). Both of these results fail for second-order logic. Again, the reason is that second-order logic can express facts about the size of domains that first-order logic cannot.

met.2 Second-order Arithmetic

Recall that the theory \(\text{PA} \) of Peano arithmetic includes the eight axioms
of Q.

$$
\forall x x' \neq 0 \\
\forall x \forall y (x' = y' \rightarrow x = y) \\
\forall x \forall y (x < y \leftrightarrow \exists z (x + z') = y) \\
\forall x (x + 0) = x \\
\forall x \forall y (x + y') = (x + y)' \\
\forall x (x \times 0) = 0 \\
\forall x \forall y (x \times y') = ((x \times y) + x)
$$

plus all sentences of the form

$$(\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x'))) \rightarrow \forall x \varphi(x)$$

The latter is a “schema,” i.e., a pattern that generates infinitely many sentences of the language of arithmetic, one for each formula $\varphi(x)$. We call this schema the (first-order) axiom schema of induction. In second-order Peano arithmetic PA^2, induction can be stated as a single sentence. PA^2 consists of the first eight axioms above plus the (second-order) induction axiom:

$$\forall X (X(0) \land \forall x (X(x) \rightarrow X(x'))) \rightarrow \forall x X(x)$$

It says that if a subset X of the domain contains $0^{\mathcal{M}}$ and with any $x \in [\mathcal{M}]$ also contains $\rho^\mathcal{M}(x)$ (i.e., it is “closed under successor”) it contains everything in the domain (i.e., $X = [\mathcal{M}]$).

The induction axiom guarantees that any structure satisfying it contains only those elements of $[\mathcal{M}]$ the axioms require to be there, i.e., the values of π for $n \in \mathbb{N}$. A model of PA^2 contains no non-standard numbers.

Theorem met.1. If $\mathcal{M} \models PA^2$ then $[\mathcal{M}] = \{Val^{\mathcal{M}}(M) : n \in \mathbb{N}\}$.

Proof. Let $N = \{Val^{\mathcal{M}}(\pi) : n \in \mathbb{N}\}$, and suppose $\mathcal{M} \models PA^2$. Of course, for any $n \in \mathbb{N}$, $Val^{\mathcal{M}}(\pi) \in [\mathcal{M}]$, so $N \subseteq [\mathcal{M}]$.

Now for inclusion in the other direction. Consider a variable assignment s with $s(X) = N$. By assumption,

$$\mathcal{M} \models \forall X (X(0) \land \forall x (X(x) \rightarrow X(x'))) \rightarrow \forall x X(x), \text{ thus}\n
\mathcal{M}, s \models (X(0) \land \forall x (X(x) \rightarrow X(x'))) \rightarrow \forall x X(x).$$

Consider the antecedent of this conditional. $Val^{\mathcal{M}}(0) \in N$, and so $\mathcal{M}, s \models X(0)$. The second conjunct, $\forall x (X(x) \rightarrow X(x'))$ is also satisfied. For suppose $x \in N$. By definition of N, $x = Val^{\mathcal{M}}(\pi)$ for some n. That gives $\rho^\mathcal{M}(x) = Val^{\mathcal{M}}(n + 1) \in N$. So, $\rho^\mathcal{M}(x) \in N$.

We have that $\mathcal{M}, s \models X(0) \land \forall x (X(x) \rightarrow X(x'))$. Consequently, $\mathcal{M}, s \models \forall x X(x)$. But that means that for every $x \in [\mathcal{M}]$ we have $x \in s(X) = N$. So, $[\mathcal{M}] \subseteq N$.

\[\square\]
Corollary met.2. Any two models of PA2 are isomorphic.

Proof. By Theorem met.1, the domain of any model of PA2 is exhausted by Val$_{r}(\mathcal{M})$. Any such model is also a model of Q. By ??, any such model is standard, i.e., isomorphic to N. □

Above we defined PA2 as the theory that contains the first eight arithmetical axioms plus the second-order induction axiom. In fact, thanks to the expressive power of second-order logic, only the first two of the arithmetical axioms plus induction are needed for second-order Peano arithmetic.

Proposition met.3. Let PA2† be the second-order theory containing the first two arithmetical axioms (the successor axioms) and the second-order induction axiom. \geq, $+$, and \times are definable in PA2†.

Proof. Exercise. □

Problem met.1. Prove Proposition met.3.

Corollary met.4. $\mathcal{M} \models PA^2$ iff $\mathcal{M} \models PA^{2\dagger}$.

Proof. Immediate from Proposition met.3. □

met.3 Second-order Logic is not Axiomatizable

Theorem met.5. Second-order logic is undecidable.

Proof. A first-order sentence is valid in first-order logic iff it is valid in second-order logic, and first-order logic is undecidable. □

Theorem met.6. There is no sound and complete proof system for second-order logic.

Proof. Let φ be a sentence in the language of arithmetic. $\mathcal{M} \models \varphi$ iff PA$^2 \models \varphi$. Let P be the conjunction of the nine axioms of PA2. PA$^2 \models \varphi$ iff $P \rightarrow \varphi$, i.e., $\mathcal{M} \models P \rightarrow \varphi$. Now consider the sentence $\forall z \forall u \forall u' \forall u'' \forall L (P' \rightarrow \varphi')$ resulting by replacing \circ by z, \cdot by the one-place function variable u, $+$ and \times by the two-place function-variables u' and u'', respectively, and $<$ by the two-place relation variable L and universally quantifying. It is a valid sentence of pure second-order logic iff the original sentence was valid iff PA$^2 \models \varphi$ iff $\mathcal{M} \models \varphi$. Thus if there were a sound and complete proof system for second-order logic, we could use it to define a computable enumeration $f: \mathbb{N} \rightarrow \text{Sent}(L_A)$ of the sentences true in \mathcal{M}. This function would be representable in Q by some first-order formula $\psi_f(x,y)$. Then the formula $\exists x \psi_f(x,y)$ would define the set of true first-order sentences of \mathcal{M}, contradicting Tarski’s Theorem. □
Second-order Logic is not Compact

Call a set of sentences Γ finitely satisfiable if every one of its finite subsets is satisfiable. First-order logic has the property that if a set of sentences Γ is finitely satisfiable, it is satisfiable. This property is called compactness. It has an equivalent version involving entailment: if $\Gamma \vdash \varphi$, then already $\Gamma_0 \vdash \varphi$ for some finite subset $\Gamma_0 \subseteq \Gamma$. In this version it is an immediate corollary of the completeness theorem: for if $\Gamma \vdash \varphi$, by completeness $\Gamma \vdash \varphi$. But a derivation can only make use of finitely many sentences of Γ.

Compactness is not true for second-order logic. There are sets of second-order sentences that are finitely satisfiable but not satisfiable, and that entail some φ without a finite subset entailing φ.

Theorem met.7. Second-order logic is not compact.

Proof. Recall that

$$\text{Inf} \equiv \exists u \forall x \forall y (u(x) = u(y) \rightarrow x = y)$$

is satisfied in a structure iff its domain is infinite. Let $\varphi^{\geq n}$ be a sentence that asserts that the domain has at least n elements, e.g.,

$$\varphi^{\geq n} \equiv \exists x_1 \ldots \exists x_n (x_1 \neq x_2 \land x_1 \neq x_3 \land \cdots \land x_{n-1} \neq x_n)$$

Consider

$$\Gamma = \{ \neg \text{Inf}, \varphi^{\geq 1}, \varphi^{\geq 2}, \varphi^{\geq 3}, \ldots \}$$

It is finitely satisfiable, since for any finite subset Γ_0 there is some k so that $\varphi^{\geq k} \in \Gamma$ but no $\varphi^{\geq n} \in \Gamma$ for $n > k$. If $|\mathfrak{M}|$ has k elements, $\mathfrak{M} \models \Gamma_0$. But, Γ is not satisfiable: if $\mathfrak{M} \models \neg \text{Inf}$, $|\mathfrak{M}|$ must be finite, say, of size k. Then $\mathfrak{M} \not\models \varphi^{\geq k+1}$.

Problem met.2. Give an example of a set Γ and a sentence φ so that $\Gamma \vdash \varphi$ but for every finite subset $\Gamma_0 \subseteq \Gamma$, $\Gamma_0 \not\vdash \varphi$.

The Löwenheim-Skolem Theorem Fails for Second-order Logic

The (Downward) Löwenheim-Skolem Theorem states that every set of sentences with an infinite model has an enumerable model. It, too, is a consequence of the completeness theorem: the proof of completeness generates a model for any consistent set of sentences, and that model is enumerable. There is also an Upward Löwenheim-Skolem Theorem, which guarantees that if a set of sentences has a denumerable model it also has a non-enumerable model. Both theorems fail in second-order logic.

Theorem met.8. The Löwenheim-Skolem Theorem fails for second-order logic: There are sentences with infinite models but no enumerable models.
Proof. Recall that

$$\text{Count} \equiv \exists z \exists u \forall X ((X(z) \land \forall x (X(x) \rightarrow X(u(x)))) \rightarrow \forall x X(x))$$

is true in a structure \mathcal{M} iff $|\mathcal{M}|$ is enumerable. So $\text{Inf} \land \neg \text{Count}$ is true in \mathcal{M} iff $|\mathcal{M}|$ is both infinite and not enumerable. There are such structures—take any non-enumerable set as the domain, e.g., $\wp(\mathbb{N})$ or \mathbb{R}. So $\text{Inf} \land \text{Count}$ has infinite models but no enumerable models. □

Theorem met.9. There are sentences with denumerable but not with non-enumerable models.

Proof. $\text{Count} \land \text{Inf}$ is true in \mathbb{N} but not in any structure \mathcal{M} with $|\mathcal{M}|$ non-enumerable. □

Photo Credits
Bibliography