Second-order Logic is not Compact

Call a set of sentences Γ \textit{finitely satisfiable} if every one of its finite subsets is satisfiable. First-order logic has the property that if a set of sentences Γ is finitely satisfiable, it is satisfiable. This property is called \textit{compactness}. It has an equivalent version involving entailment: if $\Gamma \models \varphi$, then already $\Gamma_0 \models \varphi$ for some finite subset $\Gamma_0 \subseteq \Gamma$. In this version it is an immediate corollary of the completeness theorem: for if $\Gamma \models \varphi$, by completeness $\Gamma \vdash \varphi$. But a derivation can only make use of finitely many \textit{sentences} of Γ.

Compactness is not true for second-order logic. There are sets of second-order sentences that are finitely satisfiable but not satisfiable, and that entail some φ without a finite subset entailing φ.

Theorem met.1. Second-order logic is not compact.

Proof. Recall that

$$\text{Inf} \equiv \exists u (\forall x \forall y (u(x) = u(y) \rightarrow x = y) \land \exists y \forall x y \neq u(x))$$

is satisfied in a structure iff its domain is infinite. Let $\varphi_{\geq n}$ be a sentence that asserts that the domain has at least n elements, e.g.,

$$\varphi_{\geq n} \equiv \exists x_1 \ldots \exists x_n (x_1 \neq x_2 \land x_1 \neq x_3 \land \cdots \land x_{n-1} \neq x_n).$$

Consider the set of sentences

$$\Gamma = \{ \neg \text{Inf}, \varphi_{\geq 1}, \varphi_{\geq 2}, \varphi_{\geq 3}, \ldots \}.$$

It is finitely satisfiable, since for any finite subset $\Gamma_0 \subseteq \Gamma$ there is some k so that $\varphi_{\geq k} \in \Gamma$ but no $\varphi_{\geq n} \in \Gamma$ for $n > k$. If $|\mathcal{M}|$ has k elements, $\mathcal{M} \models \Gamma_0$. But, Γ is not satisfiable: if $\mathcal{M} \models \neg \text{Inf}$, $|\mathcal{M}|$ must be finite, say, of size k. Then $\mathcal{M} \not\models \varphi_{\geq k+1}$. \hfill \Box

Problem met.1. Give an example of a set Γ and a sentence φ so that $\Gamma \models \varphi$ but for every finite subset $\Gamma_0 \subseteq \Gamma$, $\Gamma_0 \not\models \varphi$.

Photo Credits

Bibliography