plisyn:int:
sec

Chapter udf

Syntax and Semantics

This is a very quick summary of definitions only. It should be expanded
to provide a gentle intro to proofs by induction on formulas, with lots more
examples.

syn.1 Introduction

Propositional logic deals with formulas that are built from propositional
variables using the propositional connectives -, A, V, —, and <. Intuitively,
a propositional variable p stands for a sentence or proposition that is be true
or false. Whenever the “truth value” of the propositional variable in a formula
are determined, so is the truth value of any formulas formed from them using
propositional connectives. We say that propositional logic is truth functional,
because its semantics is given by functions of truth values. In particular, in
propositional logic we leave out of consideration any further determination of
truth and falsity, e.g., whether something is necessarily true rather than just
contingently true, or whether something is known to be true, or whether some-
thing is true now rather than was true or will be true. We only consider two
truth values true (T) and false (F), and so exclude from discussion the possibil-
ity that a statement may be neither true nor false, or only half true. We also
concentrate only on connectives where the truth value of a formula built from
them is completely determined by the truth values of its parts (and not, say, on
its meaning). In particular, whether the truth value of conditionals in English
is truth functional in this sense is contentious. The material conditional — is;
other logics deal with conditionals that are not truth functional.

In order to develop the theory and metatheory of truth-functional propo-
sitional logic, we must first define the syntax and semantics of its expressions.
We will describe one way of constructing formulas from propositional variables
using the connectives. Alternative definitions are possible. Other systems will
chose different symbols, will select different sets of connectives as primitive, will
use parentheses differently (or even not at all, as in the case of so-called Polish

intro

notation). What all approaches have in common, though, is that the formation
rules define the set of formulas inductively. If done properly, every expression
can result essentially in only one way according to the formation rules. The
inductive definition resulting in expressions that are uniquely readable means
we can give meanings to these expressions using the same method—inductive
definition.

Giving the meaning of expressions is the domain of semantics. The central
concept in semantics for propositonal logic is that of satisfaction in a valuation.
A valuation v assigns truth values T, F to the propositional variables. Any
valuation determines a truth value v(y) for any formula . A formula is satisfied
in a valuation v iff ©(p) = T—we write this as v F . This relation can also
be defined by induction on the structure of ¢, using the truth functions for the
logical connectives to define, say, satisfaction of ¢ A 1 in terms of satisfaction
(or not) of ¢ and .

On the basis of the satisfaction relation v F ¢ for sentences we can then
define the basic semantic notions of tautology, entailment, and satisfiability.
A formula is a tautology, F ¢, if every valuation satisfies it, i.e., 9(p) = T for
any v. It is entailed by a set of formulas, I' F ¢, if every valuation that satisfies
all the formulas in I also satisfies . And a set of formulas is satisfiable if
some valuation satisfies all formulas in it at the same time. Because formulas
are inductively defined, and satisfaction is in turn defined by induction on the
structure of formulas, we can use induction to prove properties of our semantics
and to relate the semantic notions defined.

syn.2 Propositional Formulas

Formulas of propositional logic are built up from propositional variables,
the propositional constant | and the propositional constant T using logical
connectives.

1. A denumerable set At of propositional variables pg, p1, ...
The propositional constant for falsity L.

The propositional constant for truth T.

=~ W

The logical connectives: — (negation), A (conjunction), V (disjunction),
— (conditional), <+ (biconditional)

5. Punctuation marks: (,), and the comma.

You may be familiar with different terminology and symbols than the ones
we use above. Logic texts (and teachers) commonly use either ~, -, and ! for
“negation”, A, -, and & for “conjunction”. Commonly used symbols for the
“conditional” or “implication” are —, =, and D. Symbols for “biconditional,”
“bi-implication,” or “(material) equivalence” are <», <, and =. The L sym-
bol is variously called “falsity,” “falsum,”, “absurdity,”, or “bottom.” The T
symbol is variously called “truth,” “verum,”, or “top.”

2 syntax-and-semantics rev: 074a3f1 (2018-11-13) by OLP / CC-BY

plisyn:fml:
sec

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

plsyn:fmt: Definition syn.1 (Formula). The set Frm(Lg) of formulas of propositional
defniformulas Joeic is defined inductively as follows:

1. L is an atomic formula.

2. T is an atomic formula.

3. Every propositional variable p; is an atomic formula.

4. If ¢ is a formula, then —¢ is formula.

5. If ¢ and ¢ are formulas, then (¢ A) is a formula.

6. If ¢ and ¢ are formulas, then (¢ V) is a formula.

7. If ¢ and ¢ are formulas, then (p —) is a formula.

8. If ¢ and ¢ are formulas, then (¢ <>) is a formula.

9. If ¢ is a formula and z is a variable, then Vz ¢ is a formula.
10. If ¢ is a formula and z is a variable, then Jz ¢ is a formula.
11. Nothing else is a formula.

The definitions of the set of terms and that of formulas are inductive defi- explanation
nitions. Essentially, we construct the set of formulas in infinitely many stages.
In the initial stage, we pronounce all atomic formulas to be formulas; this cor-
responds to the first few cases of the definition, i.e., the cases for T, L, p;.
“Atomic formula” thus means any formula of this form.

The other cases of the definition give rules for constructing new formulas
out of formulas already constructed. At the second stage, we can use them to
construct formulas out of atomic formulas. At the third stage, we construct
new formulas from the atomic formulas and those obtained in the second stage,
and so on. A formula is anything that is eventually constructed at such a stage,
and nothing else.

Definition syn.2 (Syntactic identity). The symbol = expresses syntactic iden-
tity between strings of symbols, i.e., ¢ = 1 iff ¢ and ¥ are strings of symbols
of the same length and which contain the same symbol in each place.

The = symbol may be flanked by strings obtained by concatenation, e.g.,
¢ = (¥ V x) means: the string of symbols ¢ is the same string as the one
obtained by concatenating an opening parenthesis, the string v, the V symbol,
the string x, and a closing parenthesis, in this order. If this is the case, then
we know that the first symbol of ¢ is an opening parenthesis, ¢ contains ¢ as a
substring (starting at the second symbol), that substring is followed by V, etc.

syntax-and-semantics rev: 074a3fl (2018-11-13) by OLP / CC-BY 3

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

syn.3 Preliminaries

Theorem syn.3. Principle of induction on formulas: If some property P
holds of all the atomic formulas and is such that

1. it holds for - whenever it holds for ¢;

if holds for and (¢ A) whenever it holds for ¢ and ;
if holds for and (@ V) whenever it holds for ¢ and 1);
if holds for and (¢ — 1) whenever it holds for ¢ and ;
(

if holds for and (@ <> 1) whenever it holds for ¢ and ;
then P holds of all formulas.

Proof. Let S be the collection of all formulas with property P. Clearly S C
Frm(Ly). S satisfies all the conditions of Definition syn.1: it contains all atomic
formulas and is closed under the logical operators. Frm(Lg) is the smallest such
class, so Frm C S. So Frm = S, and every formula has propery P. O

Proposition syn.4. Any formula in Frm(Ly) is balanced, in that it has as
many left parentheses as right ones.

Problem syn.1. Prove Proposition syn.4
Proposition syn.5. No proper initial segment of a formula is a formula.
Problem syn.2. Prove Proposition syn.5

Proposition syn.6 (Unique Readability). Any formula ¢ in Frm(Ly) has
exactly one parsing as one of the following

1. 1.
T.

o e

. bn for some p, € Atg.
= for some v in Frm(Ly).

Y A x) for some formulas i and x.

S oo

=

P — x) for some formulas ¥ and x.

Co

- (
. (¢ V x) for some formulas v and x.
- (
- (

P <> x) for some formulas ¥ and x.

Moreover, such parsing is unique.

4 syntax-and-semantics rev: 074a3f1 (2018-11-13) by OLP / CC-BY

plisyn:pre:
sec

pl:syn:pre:
thm:induction

pl:syn:pre:
prop:balanced

pl:syn:pre:
prop:noinit

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

Proof. By induction on ¢. For instance, suppose that ¢ has two distinct read-
ings as (¢ — x) and (¢’ — x’). Then ¢ and ¢’ must be the same (or else one
would be a proper initial segment of the other); so if the two readings of ¢ are
distinct it must be because x and x’ are distinct readings of the same sequence
of symbols, which is impossible by the inductive hypothesis. O

Definition syn.7 (Uniform Substitution). If ¢ and 4 are formulas, and p; is a
propositional variable, then ¢[1/p;] denotes the result of replacing each occur-
rence of p; by an occurrence of ¢ in ; similarly, the simultaneous substitution
of p1, ..., pn by formulas v, ..., B, is denoted by ¢[t1/p1, ..., Un/Dn].

Problem syn.3. Give a mathematically rigorous definition of ¢[)/p] by in-
duction.

syn.4 Valuations and Satisfaction

plisyn:val:
sec

Definition syn.8 (Valuations). Let {T,F} be the set of the two truth values,
“true” and “false.” A waluation for Ly is a function v assigning either T or F
to the propositional variables of the language, i.e., v: Atg — {T,F}.

Definition syn.9. Given a valuation v, define the evaluation function v(:)Frm(Ly) —
{T,F} inductively by:

o(Ll) =TF;
o(T) =T,
_ T ifo(e) =T
o(me) = F otherwise.
_ [T ifB(p) =T and B(¢p) = T;
ESEAL O P —F or 5(¢)) =

= S
R R

b(p =) =

=
. .
- .

T i

_ f
0(p) = F it

{
{
U(wvw){
{
{

The valuation clauses correspond to the following truth tables: explanation

syntax-and-semantics rev: 074a3fl (2018-11-13) by OLP / CC-BY 5

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

R8s

Theorem syn.10 (Local Determination). Suppose that v1 and vs are valua-
tions that agree on the propositional letters occurring in @, i.e., 01(pn) = v2(pn)
whenever p, occurs in ¢. Then they also agree on any @, i.e., v1(p) = v2(p).

Proof. By induction on . O

Definition syn.11 (Satisfaction). Using the evaluation function, we can de-
fine the notion of satisfaction of a formula ¢ by a valuation v, v E ¢, inductively
as follows. (We write v ¥ ¢ to mean “not v = ¢.”)

1. p=1: vFp.

2. p=T: vE@.

3. o=p;: MEiffo(p;) =T.

4. p=—: vE @ iff v E .

5. p =W Ax): vEgiffoEY and v E .

6. p=WVyx): vEpiff vEporvkE1Y (or both).

7. o= —=x): vE@iff v or vE x (or both).

8. p= (e x): vE @iff either both v F ¢ and v E x, or neither v F ¢ nor
vk x.

If I' is a set of formulas, v F I iff v E ¢ for every p € I
Proposition syn.12. v E ¢ iff v(p) = T.
Proof. By induction on . O

Problem syn.4. Prove Proposition syn.12

syn.5 Semantic Notions

We define the following semantic notions:

Definition syn.13. 1. A formula ¢ is satisfiable if for some v, v F ; it is
unsatisfiable if for no v, v F ¢;

2. A formula ¢ is a tautology if v F ¢ for all valuations v;

3. A formula ¢ is contingent if it is satisfiable but not a tautology;

6 syntax-and-semantics rev: 074a3fl (2018-11-13) by OLP / CC-BY

pl:syn:val:

thm:LocalDetermination

plisyn:val:

defn:satisfaction

pl:syn:val:

prop:sat-value

plisyn:sem:
sec

https://github.com/OpenLogicProject/OpenLogic
https://github.com/OpenLogicProject/OpenLogic/commits/master
http://openlogicproject.org/
http://creativecommons.org/licenses/by/4.0/

pl:syn:sem:

prop:semanticalfacts

pl:syn:sem:
def:Monotony

pl:syn:sem:
def:Cut

pl:syn:sem:

prop:entails-unsat

pl:syn:sem:

thm:sem-deduction

4. If I' is a set of formulas, I' F ¢ (“I" entails ¢”) if and only if v F ¢ for
every valuation v for which v F I

5. If I' is a set of formulas, I' is satisfiable if there is a valuation v for which
v I', and I' is unsatisfiable otherwise.

Proposition syn.14.

~

. 15 a tautology if and only if O E ¢;
2. If TEp and I'E o — 1) then I' E ;
3. If I' is satisfiable then every finite subset of I is also satisfiable;
4. Monotony: if ' C A and I' E ¢ then also AE ¢;
5. Transitivity: if ' E @ and AU{p} E) then ' UAE 9;
Proof. Exercise.]
Problem syn.5. Prove Proposition syn.14
Proposition syn.15. I'E ¢ if and only if I' U {—¢} is unsatisfiable;
Proof. Exercise. O
Problem syn.6. Prove Proposition syn.15

Theorem syn.16 (Semantic Deduction Theorem). I'E ¢ — v if and only if
rU{p}E.

Proof. Exercise. O

Problem syn.7. Prove Theorem syn.16

Photo Credits

Bibliography

	Syntax and Semantics
	Introduction
	Propositional Formulas
	Preliminaries
	Valuations and Satisfaction
	Semantic Notions

	Photo Credits
	Bibliography

