syn.1 Semantic Notions pl:syn:sem: sec We define the following semantic notions: **Definition syn.1.** 1. A formula φ is *satisfiable* if for some \mathfrak{v} , $\mathfrak{v} \models \varphi$; it is *unsatisfiable* if for no \mathfrak{v} , $\mathfrak{v} \models \varphi$; - 2. A formula φ is a tautology if $\mathfrak{v} \models \varphi$ for all valuations v; - 3. A formula φ is *contingent* if it is satisfiable but not a tautology; - 4. If Γ is a set of formulas, $\Gamma \vDash \varphi$ (" Γ entails φ ") if and only if $\mathfrak{v} \vDash \varphi$ for every valuation \mathfrak{v} for which $\mathfrak{v} \vDash \Gamma$. - 5. If Γ is a set of formulas, Γ is *satisfiable* if there is a valuation \mathfrak{v} for which $\mathfrak{v} \models \Gamma$, and Γ is *unsatisfiable* otherwise. pl:syn:sem: prop:semanticalfacts ## pl:syn:sem: Proposition syn.2. - 1. φ is a tautology if and only if $\emptyset \vDash \varphi$; - 2. If $\Gamma \vDash \varphi$ and $\Gamma \vDash \varphi \rightarrow \psi$ then $\Gamma \vDash \psi$; - 3. If Γ is satisfiable then every finite subset of Γ is also satisfiable; pl:syn:sem: def:Monotony pl:syn:sem: def:Cut - 4. Monotony: if $\Gamma \subseteq \Delta$ and $\Gamma \vDash \varphi$ then also $\Delta \vDash \varphi$; - 5. Transitivity: if $\Gamma \vDash \varphi$ and $\Delta \cup \{\varphi\} \vDash \psi$ then $\Gamma \cup \Delta \vDash \psi$; Proof. Exercise. **Problem syn.1.** Prove Proposition syn.2 $pl:syn:sem:\\prop:entails-unsat$ **Proposition syn.3.** $\Gamma \vDash \varphi$ if and only if $\Gamma \cup \{\neg \varphi\}$ is unsatisfiable; Proof. Exercise. Problem syn.2. Prove Proposition syn.3 $pl:syn:sem:\\ thm:sem-deduction$ **Theorem syn.4** (Semantic Deduction Theorem). $\Gamma \vDash \varphi \rightarrow \psi$ if and only if $\Gamma \cup \{\varphi\} \vDash \psi$. *Proof.* Exercise. \Box Problem syn.3. Prove Theorem syn.4 **Photo Credits** **Bibliography**