syn.1 Semantic Notions

pl:syn:sem: sec We define the following semantic notions:

Definition syn.1. 1. A formula φ is *satisfiable* if for some \mathfrak{v} , $\mathfrak{v} \models \varphi$; it is *unsatisfiable* if for no \mathfrak{v} , $\mathfrak{v} \models \varphi$;

- 2. A formula φ is a tautology if $\mathfrak{v} \models \varphi$ for all valuations v;
- 3. A formula φ is *contingent* if it is satisfiable but not a tautology;
- 4. If Γ is a set of formulas, $\Gamma \vDash \varphi$ (" Γ entails φ ") if and only if $\mathfrak{v} \vDash \varphi$ for every valuation \mathfrak{v} for which $\mathfrak{v} \vDash \Gamma$.
- 5. If Γ is a set of formulas, Γ is *satisfiable* if there is a valuation \mathfrak{v} for which $\mathfrak{v} \models \Gamma$, and Γ is *unsatisfiable* otherwise.

pl:syn:sem: prop:semanticalfacts

pl:syn:sem: Proposition syn.2.

- 1. φ is a tautology if and only if $\emptyset \vDash \varphi$;
- 2. If $\Gamma \vDash \varphi$ and $\Gamma \vDash \varphi \rightarrow \psi$ then $\Gamma \vDash \psi$;
- 3. If Γ is satisfiable then every finite subset of Γ is also satisfiable;

pl:syn:sem: def:Monotony pl:syn:sem: def:Cut

- 4. Monotony: if $\Gamma \subseteq \Delta$ and $\Gamma \vDash \varphi$ then also $\Delta \vDash \varphi$;
- 5. Transitivity: if $\Gamma \vDash \varphi$ and $\Delta \cup \{\varphi\} \vDash \psi$ then $\Gamma \cup \Delta \vDash \psi$;

Proof. Exercise.

Problem syn.1. Prove Proposition syn.2

 $pl:syn:sem:\\prop:entails-unsat$

Proposition syn.3. $\Gamma \vDash \varphi$ if and only if $\Gamma \cup \{\neg \varphi\}$ is unsatisfiable;

Proof. Exercise.

Problem syn.2. Prove Proposition syn.3

 $pl:syn:sem:\\ thm:sem-deduction$

Theorem syn.4 (Semantic Deduction Theorem). $\Gamma \vDash \varphi \rightarrow \psi$ if and only if $\Gamma \cup \{\varphi\} \vDash \psi$.

Proof. Exercise. \Box

Problem syn.3. Prove Theorem syn.4

Photo Credits

Bibliography