We define the following semantic notions:

Definition syn.1.
1. A formula \(\varphi \) is *satisfiable* if for some \(v \), \(v \models \varphi \); it is *unsatisfiable* if for no \(v \), \(v \models \varphi \);
2. A formula \(\varphi \) is a *tautology* if \(v \models \varphi \) for all valuations \(v \);
3. A formula \(\varphi \) is *contingent* if it is satisfiable but not a tautology;
4. If \(\Gamma \) is a set of formulas, \(\Gamma \models \varphi \) (“\(\Gamma \) entails \(\varphi \)”) if and only if \(v \models \varphi \) for every valuation \(v \) for which \(v \models \Gamma \).
5. If \(\Gamma \) is a set of formulas, \(\Gamma \) is *satisfiable* if there is a valuation \(v \) for which \(v \models \Gamma \), and \(\Gamma \) is *unsatisfiable* otherwise.

Proposition syn.2.
1. \(\varphi \) is a tautology if and only if \(\emptyset \models \varphi \);
2. If \(\Gamma \models \varphi \) and \(\Gamma \models \varphi \rightarrow \psi \) then \(\Gamma \models \psi \);
3. If \(\Gamma \) is satisfiable then every finite subset of \(\Gamma \) is also satisfiable;
4. Monotony: if \(\Gamma \subseteq \Delta \) and \(\Gamma \models \varphi \) then also \(\Delta \models \varphi \);
5. Transitivity: if \(\Gamma \models \varphi \) and \(\Delta \cup \{ \varphi \} \models \psi \) then \(\Gamma \cup \Delta \models \psi \).

Proof. Exercise.

Problem syn.1. Prove Proposition syn.2

Proposition syn.3. \(\Gamma \models \varphi \) if and only if \(\Gamma \cup \{ \neg \varphi \} \) is unsatisfiable.

Proof. Exercise.

Problem syn.2. Prove Proposition syn.3

Theorem syn.4 (Semantic Deduction Theorem). \(\Gamma \models \varphi \rightarrow \psi \) if and only if \(\Gamma \cup \{ \varphi \} \models \psi \).

Proof. Exercise.

Problem syn.3. Prove Theorem syn.4

Photo Credits

Bibliography