syn.1 Semantic Notions

pl:syn:sem: We define the following semantic notions:

- **Definition syn.1.** 1. A formula φ is *satisfiable* if for some $\mathfrak{v}, \mathfrak{v} \models \varphi$; it is *unsatisfiable* if for no $\mathfrak{v}, \mathfrak{v} \models \varphi$;
 - 2. A formula φ is a *tautology* if $\mathfrak{v} \models \varphi$ for all valuations v;
 - 3. A formula φ is *contingent* if it is satisfiable but not a tautology;
 - 4. If Γ is a set of formulas, $\Gamma \vDash \varphi$ (" Γ entails φ ") if and only if $\mathfrak{v} \vDash \varphi$ for every valuation \mathfrak{v} for which $\mathfrak{v} \vDash \Gamma$.
 - 5. If Γ is a set of formulas, Γ is *satisfiable* if there is a valuation \mathfrak{v} for which $\mathfrak{v} \models \Gamma$, and Γ is *unsatisfiable* otherwise.

Problem syn.1. For each of the following four formulas determine whether it is (a) satisfiable, (b) tautology, and (c) contingent.

- 1. $(p_0 \rightarrow (\neg p_1 \rightarrow \neg p_0)).$
- 2. $((p_0 \land \neg p_1) \to (\neg p_0 \land p_2)) \leftrightarrow ((p_2 \to p_0) \to (p_0 \to p_1)).$
- 3. $(p_0 \leftrightarrow p_1) \rightarrow (p_2 \leftrightarrow \neg p_1).$
- 4. $((p_0 \leftrightarrow (\neg p_1 \land p_2)) \lor (p_2 \rightarrow (p_0 \leftrightarrow p_1))).$

pl:syn:sem: **Proposition syn.2**.

- 1. φ is a tautology if and only if $\emptyset \vDash \varphi$;
 - 2. If $\Gamma \vDash \varphi$ and $\Gamma \vDash \varphi \rightarrow \psi$ then $\Gamma \vDash \psi$;
- 3. If Γ is satisfiable then every finite subset of Γ is also satisfiable;

4. Monotonicity: if $\Gamma \subseteq \Delta$ and $\Gamma \vDash \varphi$ then also $\Delta \vDash \varphi$;

5. Transitivity: if $\Gamma \vDash \varphi$ and $\Delta \cup \{\varphi\} \vDash \psi$ then $\Gamma \cup \Delta \vDash \psi$.

def:Cut Proof. Exercise.

pl:syn:sem: def:monotonicity

pl:syn:sem:

Problem syn.2. Prove Proposition syn.2

pl:syn:sem: prop:entails-unsat	Proposition syn.3.	$\Gamma \vDash \varphi$ if and only if $\Gamma \cup \{\neg \varphi\}$ is unsatisfiable.
	Proof. Exercise.	

Problem syn.3. Prove Proposition syn.3

pl:syn:sem: Theorem syn.4 (Semantic Deduction Theorem). $\Gamma \vDash \varphi \rightarrow \psi$ if and only thm:sem-deduction if $\Gamma \cup \{\varphi\} \vDash \psi$.

Proof. Exercise.

Problem syn.4. Prove Theorem syn.4

Photo Credits

Bibliography

semantic-notions rev: 6c541de (2024-02-28) by OLP / CC-BY