syn.1 Semantic Notions

We define the following semantic notions:

Definition syn.1. 1. A formula φ is satisfiable if for some v, $v \models \varphi$; it is unsatisfiable if for no v, $v \models \varphi$;
2. A formula φ is a tautology if $v \models \varphi$ for all valuations v;
3. A formula φ is contingent if it is satisfiable but not a tautology;
4. If Γ is a set of formulas, $\Gamma \models \varphi$ ("Γ entails φ") if and only if $v \models \varphi$ for every valuation v for which $v \models \Gamma$.
5. If Γ is a set of formulas, Γ is satisfiable if there is a valuation v for which $v \models \Gamma$, and Γ is unsatisfiable otherwise.

Proposition syn.2.

1. φ is a tautology if and only if $\emptyset \models \varphi$;
2. If $\Gamma \models \varphi$ and $\Gamma \models \varphi \rightarrow \psi$ then $\Gamma \models \psi$;
3. If Γ is satisfiable then every finite subset of Γ is also satisfiable;
4. Monotony: if $\Gamma \subseteq \Delta$ and $\Gamma \models \varphi$ then $\Delta \models \varphi$;
5. Transitivity: if $\Gamma \models \varphi$ and $\Delta \cup \{\varphi\} \models \psi$ then $\Gamma \cup \Delta \models \psi$;

Proof. Exercise.

Problem syn.1. Prove Proposition syn.2

Proposition syn.3. $\Gamma \models \varphi$ if and only if $\Gamma \cup \{\neg \varphi\}$ is unsatisfiable;

Proof. Exercise.

Problem syn.2. Prove Proposition syn.3

Theorem syn.4 (Semantic Deduction Theorem). $\Gamma \models \varphi \rightarrow \psi$ if and only if $\Gamma \cup \{\varphi\} \models \psi$.

Proof. Exercise.

Problem syn.3. Prove Theorem syn.4

Photo Credits

Bibliography