Theorem syn.1 (Principle of induction on formulas). If some property P holds for all the atomic formulas and is such that

1. it holds for $\neg \varphi$ whenever it holds for φ;
2. it holds for $(\varphi \land \psi)$ whenever it holds for φ and ψ;
3. it holds for $(\varphi \lor \psi)$ whenever it holds for φ and ψ;
4. it holds for $(\varphi \rightarrow \psi)$ whenever it holds for φ and ψ;
5. it holds for $(\varphi \leftrightarrow \psi)$ whenever it holds for φ and ψ;

then P holds for all formulas.

Proof. Let S be the collection of all formulas with property P. Clearly $S \subseteq \text{Frm}(L_0)$. S satisfies all the conditions of ??; it contains all atomic formulas and is closed under the logical operators. $\text{Frm}(L_0)$ is the smallest such class, so $\text{Frm}(L_0) \subseteq S$. So $\text{Frm}(L_0) = S$, and every formula has property P. \square

Proposition syn.2. Any formula in $\text{Frm}(L_0)$ is balanced, in that it has as many left parentheses as right ones.

Problem syn.1. Prove Proposition syn.2

Proposition syn.3. No proper initial segment of a formula is a formula.

Problem syn.2. Prove Proposition syn.3

Proposition syn.4 (Unique Readability). Any formula φ in $\text{Frm}(L_0)$ has exactly one parsing as one of the following

1. \bot.
2. \top.
3. p_n for some $p_n \in \text{At}_0$.
4. $\neg \psi$ for some formula ψ.
5. $(\psi \land \chi)$ for some formulas ψ and χ.
6. $(\psi \lor \chi)$ for some formulas ψ and χ.
7. $(\psi \rightarrow \chi)$ for some formulas ψ and χ.
8. $(\psi \leftrightarrow \chi)$ for some formulas ψ and χ.

Moreover, this parsing is unique.
Proof. By induction on φ. For instance, suppose that φ has two distinct readings as $(\psi \to \chi)$ and $(\psi' \to \chi')$. Then ψ and ψ' must be the same (or else one would be a proper initial segment of the other); so if the two readings of φ are distinct it must be because χ and χ' are distinct readings of the same sequence of symbols, which is impossible by the inductive hypothesis.

Definition syn.5 (Uniform Substitution). If φ and ψ are formulas, and p_i is a propositional variable, then $\varphi[\psi/p_i]$ denotes the result of replacing each occurrence of p_i by an occurrence of ψ in φ; similarly, the simultaneous substitution of p_1, \ldots, p_n by formulas ψ_1, \ldots, ψ_n is denoted by $\varphi[\psi_1/p_1, \ldots, \psi_n/p_n]$.

Problem syn.3. Give a mathematically rigorous definition of $\varphi[\psi/p]$ by induction.

Photo Credits

Bibliography