Table 1: Simplified rules for S_5.

<table>
<thead>
<tr>
<th>$n T \Box \phi$</th>
<th>$m T \varphi$</th>
<th>$n F \Box \phi$</th>
<th>$m F \varphi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\Rightarrow</td>
<td>\Rightarrow</td>
<td>\Rightarrow</td>
<td>\Rightarrow</td>
</tr>
<tr>
<td>m is used</td>
<td>m is used</td>
<td>m is new</td>
<td>m is new</td>
</tr>
</tbody>
</table>

S_5 is sound and complete with respect to the class of universal models, i.e., models where every world is accessible from every world. In universal models the accessibility relation doesn’t matter: “there is a world w where $M, w \models \varphi$” is true if and only if there is such a w that’s accessible from u. So in S_5, we can define models as simply a set of worlds and a valuation V. This suggests that we should be able to simplify the tableau rules as well. In the general case, we take as prefixes sequences of positive integers, so that we can keep track of which such prefixes name worlds which are accessible from others: $\sigma.n$ names a world accessible from σ. But in S_5 any world is accessible from any world, so there is no need to so keep track. Instead, we can use positive integers as prefixes. The simplified rules are given in table 1.

Example tab.1. We give a simplified closed tableau that shows $S_5 \vdash 5$, i.e., $\Diamond \varphi \rightarrow \Box \Diamond \varphi$.

1. $1F \ \Diamond \varphi \rightarrow \Box \Diamond \varphi$ Assumption
2. $1T \ \Diamond \varphi$ $\rightarrow F1$
3. $1F \ \Box \Diamond \varphi$ $\rightarrow F1$
4. $2F \ \Diamond \varphi$ $\rightarrow F3$
5. $3T \ \varphi$ $\Diamond T2$
6. $3F \ \varphi$ $\Diamond F4$

\otimes
Photo Credits

Bibliography