syn.1 Truth in a Model mod:syn:tru: sec Sometimes we are interested which formulas are true at every world in a given model. Let's introduce a notation for this. **Definition syn.1.** A formula φ is true in a model $M = \langle W, R, V \rangle$, written $\mathfrak{M} \Vdash \varphi$, if and only if $\mathfrak{M}, w \Vdash \varphi$ for every $w \in W$. $mod:syn:tru:\\prop:truthfacts$ ## mod:syn:tru: Proposition syn.2. - 1. If $\mathfrak{M} \Vdash \varphi$ then $\mathfrak{M} \nvDash \neg \varphi$, but not vice-versa. - 2. If $\mathfrak{M} \Vdash \varphi \to \psi$ then $\mathfrak{M} \Vdash \varphi$ only if $\mathfrak{M} \Vdash \psi$, but not vice-versa. *Proof.* 1. If $\mathfrak{M} \Vdash \varphi$ then φ is true at all worlds in W, and since $W \neq \emptyset$, it can't be that $\mathfrak{M} \Vdash \neg \varphi$, or else φ would have to be both true and false at some world. On the other hand, if $\mathfrak{M} \nVdash \neg \varphi$ then φ is true at some world $w \in W$. It does not follow that $\mathfrak{M}, w \Vdash \varphi$ for every $w \in W$. For instance, in the model of ??, $\mathfrak{M} \nVdash \neg p$, and also $\mathfrak{M} \nVdash p$. 2. Assume $\mathfrak{M} \Vdash \varphi \to \psi$ and $\mathfrak{M} \Vdash \varphi$; to show $\mathfrak{M} \Vdash \psi$ let $w \in W$ be an arbitrary world. Then $\mathfrak{M}, w \Vdash \varphi \to \psi$ and $\mathfrak{M}, w \Vdash \psi$, so $\mathfrak{M}, w \Vdash \psi$, and since w was arbitrary, $\mathfrak{M} \Vdash \psi$. To show that the converse fails, we need to find a model \mathfrak{M} such that $\mathfrak{M} \Vdash \varphi$ only if $\mathfrak{M} \Vdash \psi$, but $\mathfrak{M} \nvDash \varphi \to \psi$. Consider again the model of $\ref{eq:multiple} p$ and hence (vacuously) $\mathfrak{M} \Vdash p$ only if $\mathfrak{M} \Vdash q$. However, $\mathfrak{M} \nvDash p \to q$, as p is true but q false at w_1 . **Problem syn.1.** Consider the following model \mathfrak{M} for the language comprising p_1 , p_2 , p_3 as the only propositional variables: Are the following formulas and schemas true in the model \mathfrak{M} , i.e., true at every world in \mathfrak{M} ? Explain. - 1. $p \rightarrow \Diamond p$ (for p atomic); - 2. $\varphi \to \Diamond \varphi$ (for φ arbitrary); - 3. $\Box p \rightarrow p$ (for p atomic); - 4. $\neg p \rightarrow \Diamond \Box p$ (for p atomic); - 5. $\Diamond \Box \varphi$ (for φ arbitrary); - 6. $\Box \Diamond p$ (for p atomic). ## **Photo Credits** ## Bibliography