Truth in a Model

Sometimes we are interested in which formulas are true at every world in a given model. Let’s introduce a notation for this.

Definition syn.1. A formula φ is true in a model $M = \langle W, R, V \rangle$, written $M \models \varphi$, if and only if $M, w \models \varphi$ for every $w \in W$.

Proposition syn.2.

1. If $M \models \varphi$ then $M \not\models \neg \varphi$, but not vice-versa.
2. If $M \models \varphi \rightarrow \psi$ then $M \models \varphi$ only if $M \models \psi$, but not vice-versa.

Proof.

1. If $M \models \varphi$ then φ is true at all worlds in W, and since $W \neq \emptyset$, it can’t be that $M \not\models \neg \varphi$, or else φ would have to be both true and false at some world.

On the other hand, if $M \not\models \neg \varphi$ then φ is true at some world $w \in W$. It does not follow that $M, w \models \varphi$ for every $w \in W$. For instance, in the model of $??$, $M \not\models \neg p$, and also $M \not\models p$.

2. Assume $M \models \varphi \rightarrow \psi$ and $M \models \varphi$; to show $M \models \psi$ let $w \in W$ be an arbitrary world. Then $M, w \models \varphi \rightarrow \psi$ and $M, w \models \psi$, so $M, w \models \psi$, and since w was arbitrary, $M \models \psi$.

To show that the converse fails, we need to find a model M such that $M \not\models \varphi$ only if $M \models \psi$, but $M \not\models \varphi \rightarrow \psi$. Consider again the model of $??$: $M \not\models p$ and hence (vacuously) $M \models p$ only if $M \models q$. However, $M \not\models p \rightarrow q$, as p is true but q false at w_1.

Problem syn.1. Consider the following model M for the language comprising p_1, p_2, p_3 as the only propositional variables:

![Diagram of a model with worlds w_1, w_2, w_3 and propositions p_1, p_2, p_3.]

Are the following formulas and schemas true in the model M, i.e., true at every world in M? Explain.

1. $p \rightarrow \Diamond p$ (for p atomic);
2. $\varphi \rightarrow \Diamond \varphi$ (for φ arbitrary);
3. $\Box p \rightarrow p$ (for p atomic);
4. $\neg p \rightarrow \Diamond \Box p$ (for p atomic);
5. $\Diamond \Box \varphi$ (for φ arbitrary);
6. $\Box \Diamond p$ (for p atomic).

Photo Credits

Bibliography