syn.1 Truth at a World

mod:syn:trw:

Every modal model determines which modal formulas count as true at which worlds in it. The relation "model $\mathfrak M$ makes formula φ true at world w" is the basic notion of relational semantics. The relation is defined inductively and coincides with the usual characterization using truth tables for the non-modal operators.

mod:syn:trw: defn:mmodels **Definition syn.1.** Truth of a formula φ at w in a \mathfrak{M} , in symbols: $\mathfrak{M}, w \Vdash \varphi$, is defined inductively as follows:

- 1. $\varphi \equiv \bot$: Never $\mathfrak{M}, w \Vdash \bot$.
- 2. $\varphi \equiv \top$: Always $\mathfrak{M}, w \Vdash \top$.
- 3. $\mathfrak{M}, w \Vdash p \text{ iff } w \in V(p)$
- 4. $\varphi \equiv \neg \psi$: $\mathfrak{M}, w \Vdash \varphi$ iff $\mathfrak{M}, w \nvDash \psi$.
- 5. $\varphi \equiv (\psi \land \chi)$: $\mathfrak{M}, w \Vdash \varphi$ iff $\mathfrak{M}, w \Vdash \psi$ and $\mathfrak{M}, w \Vdash \chi$.
- 6. $\varphi \equiv (\psi \vee \chi)$: $\mathfrak{M}, w \Vdash \varphi$ iff $\mathfrak{M}, w \Vdash \psi$ or $\mathfrak{M}, w \Vdash \chi$ (or both).
- 7. $\varphi \equiv (\psi \rightarrow \chi)$: $\mathfrak{M}, w \Vdash \varphi$ iff $\mathfrak{M}, w \nvDash \psi$ or $\mathfrak{M}, w \Vdash \chi$.
- 8. $\varphi \equiv (\psi \leftrightarrow \chi)$: $\mathfrak{M}, w \Vdash \varphi$ iff either both $\mathfrak{M}, w \Vdash \psi$ and $\mathfrak{M}, w \Vdash \chi$ or neither $\mathfrak{M}, w \Vdash \psi$ nor $\mathfrak{M}, w \Vdash \chi$.
- 9. $\varphi \equiv \Box \psi$: $\mathfrak{M}, w \Vdash \varphi$ iff $\mathfrak{M}, w' \Vdash \psi$ for all $w' \in W$ with Rww'
- 10. $\varphi \equiv \Diamond \psi$: $\mathfrak{M}, w \Vdash \varphi$ iff $\mathfrak{M}, w' \Vdash \psi$ for at least one $w' \in W$ with Rww'

Note that by clause (9), a formula $\Box \psi$ is true at w whenever there are no w' with wRw'. In such a case $\Box \psi$ is vacuously true at w. Also, $\Box \psi$ may be satisfied at w even if ψ is not. The truth of ψ at w does not guarantee the truth of $\Diamond \psi$ at w. This holds, however, if Rww, e.g., if R is reflexive. If there is no w' such that Rww', then $\mathfrak{M}, w \nvDash \Diamond \varphi$, for any φ .

Problem syn.1. Consider the model of ??. Which of the following hold?

- 1. $\mathfrak{M}, w_1 \Vdash q$;
- 2. $\mathfrak{M}, w_3 \Vdash \neg q$;
- 3. $\mathfrak{M}, w_1 \Vdash p \vee q$;
- 4. $\mathfrak{M}, w_1 \Vdash \Box (p \lor q);$
- 5. $\mathfrak{M}, w_3 \Vdash \Box q$;
- 6. $\mathfrak{M}, w_3 \Vdash \Box \bot$;
- 7. $\mathfrak{M}, w_1 \Vdash \Diamond q$;

 ${\bf mod:syn:trw:}$ ${\bf defn:sub:mmodels-box}$ ${\bf mod:syn:trw:}$ ${\bf defn:sub:mmodels-diamond}$

- 8. $\mathfrak{M}, w_1 \Vdash \Box q$;
- 9. $\mathfrak{M}, w_1 \Vdash \neg \Box \Box \neg q$.

Proposition syn.2.

 $mod:syn:trw: \\ prop:dual$

- 1. $\mathfrak{M}, w \Vdash \Box \varphi \text{ iff } \mathfrak{M}, w \Vdash \neg \Diamond \neg \varphi$.
- 2. $\mathfrak{M}, w \Vdash \Diamond \varphi \text{ iff } \mathfrak{M}, w \Vdash \neg \Box \neg \varphi$.

Proof. 1. $\mathfrak{M}, w \Vdash \neg \Diamond \neg \varphi$ iff $\mathfrak{M} \nVdash \Diamond \neg \varphi$ by definition of $\mathfrak{M}, w \Vdash \mathfrak{M}, w \Vdash \Diamond \neg \varphi$ iff for some w' with Rww', $\mathfrak{M}, w' \Vdash \neg \varphi$. Hence, $\mathfrak{M}, w \nVdash \Diamond \neg \varphi$ iff for all w' with Rww', $\mathfrak{M}, w' \nVdash \neg \varphi$. We also have $\mathfrak{M}, w' \nVdash \neg \varphi$ iff $\mathfrak{M}, w' \Vdash \varphi$. Together we have $\mathfrak{M}, w \Vdash \neg \Diamond \neg \varphi$ iff for all w' with Rww', $\mathfrak{M}, w' \Vdash \varphi$. Again by definition of $\mathfrak{M}, w \Vdash$, that is the case iff $\mathfrak{M}, w \Vdash \Box \varphi$.

2. $\mathfrak{M}, w \Vdash \neg \Box \neg \varphi$ iff $\mathfrak{M} \nvDash \Box \neg \varphi$. $\mathfrak{M}, w \Vdash \Box \neg \varphi$ iff for all w' with Rww', $\mathfrak{M}, w' \Vdash \neg \varphi$. Hence, $\mathfrak{M}, w \nvDash \Box \neg \varphi$ iff for some w' with Rww', $\mathfrak{M}, w' \nvDash \neg \varphi$. We also have $\mathfrak{M}, w' \nvDash \neg \varphi$ iff $\mathfrak{M}, w' \Vdash \varphi$. Together we have $\mathfrak{M}, w \Vdash \neg \Box \neg \varphi$ iff for some w' with Rww', $\mathfrak{M}, w' \Vdash \varphi$. Again by definition of $\mathfrak{M}, w \Vdash$, that is the case iff $\mathfrak{M}, w \Vdash \Diamond \varphi$.

Problem syn.2. Complete the proof of Proposition syn.2.

Problem syn.3. Let $\mathfrak{M} = \langle W, R, V \rangle$ be a model, and suppose $w_1, w_2 \in W$ are such that:

- 1. $w_1 \in V(p)$ if and only if $w_2 \in V(p)$; and
- 2. for all $w \in W$: Rw_1w if and only if Rw_2w .

Using induction on formulas, show that for all formulas φ : $\mathfrak{M}, w_1 \Vdash \varphi$ if and only if $\mathfrak{M}, w_2 \Vdash \varphi$.

Problem syn.4. Let $\mathfrak{M} = \langle M, R, V \rangle$. Show that $\mathfrak{M}, w \Vdash \neg \Diamond \varphi$ if and only if $\mathfrak{M}, w \Vdash \Box \neg \varphi$.

Photo Credits

Bibliography