syn.1 Schemas and Validity

nml:syn:sch: sec

Definition syn.1. A *schema* is a set of formulas comprising all and only the substitution instances of some modal formula χ , i.e.,

$$\{\psi: \exists \theta_1, \ldots, \exists \theta_n \ (\psi = \chi[\theta_1/p_1, \ldots, \theta_n/p_n])\}.$$

The formula χ is called the *characteristic* formula of the schema, and it is unique up to a renaming of the propositional variables. A formula φ is an *instance* of a schema if it is a member of the set.

It is convenient to denote a schema by the meta-linguistic expression obtained by substituting ' φ ', ' ψ ', ..., for the atomic components of χ . So, for instance, the following denote schemas: ' φ ', ' $\varphi \rightarrow \Box \varphi$ ', ' $\varphi \rightarrow (\psi \rightarrow \varphi)$ '. They correspond to the characteristic formulas $p, p \rightarrow \Box p, p \rightarrow (q \rightarrow p)$. The schema ' φ ' denotes the set of *all* formulas.

Definition syn.2. A schema is *true* in a model if and only if all of its instances are; and a schema is *valid* if and only if it is true in every model.

nml:syn:sch: Proposition syn.3. The following schema K is valid prop:Kvalid

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi). \tag{K}$$

Proof. We need to show that all instances of the schema are true at every world in every model. So let $\mathfrak{M} = \langle W, R, V \rangle$ and $w \in W$ be arbitrary. To show that a conditional is true at a world we assume the antecedent is true to show that consequent is true as well. In this case, let $\mathfrak{M}, w \Vdash \Box(\varphi \to \psi)$ and $\mathfrak{M}, w \Vdash \Box\varphi$. We need to show $\mathfrak{M} \Vdash \Box \psi$. So let w' be arbitrary such that Rww'. Then by the first assumption $\mathfrak{M}, w' \Vdash \varphi \to \psi$ and by the second assumption $\mathfrak{M}, w' \Vdash \varphi$. It follows that $\mathfrak{M}, w' \Vdash \psi$. Since w' was arbitrary, $\mathfrak{M}, w \Vdash \Box\psi$.

nml:syn:sch: Proposition syn.4. The following schema DUAL is valid prop:Dual-valid

$$\Diamond \varphi \leftrightarrow \neg \Box \neg \varphi. \tag{DUAL}$$

Proof. Exercise.

Problem syn.1. Prove Proposition syn.4.

nml:syn:sch: **Proposition syn.5.** If φ and $\varphi \rightarrow \psi$ are true at a world in a model then so *prop:soundMP* is ψ . Hence, the valid formulas are closed under modus ponens.

nml:syn:sch: **Proposition syn.6.** A formula φ is valid iff all its substitution instances are. *prop:valid-instances* In other words, a schema is valid iff its characteristic formula is.

schemas rev: f0ceba3 (2023-09-14) by OLP / CC-BY

Valid Schemas	Invalid Schemas
$\Box(\varphi \to \psi) \to (\Diamond \varphi \to \Diamond \psi)$	$\Box(\varphi \lor \psi) \to (\Box \varphi \lor \Box \psi)$
$\left \begin{array}{c} \Diamond(\varphi \to \psi) \to (\Box \varphi \to \Diamond \psi) \end{array} \right $	$(\Diamond \varphi \land \Diamond \psi) \to \Diamond (\varphi \land \psi)$
$\Box(\varphi \land \psi) \leftrightarrow (\Box \varphi \land \Box \psi)$	$\varphi \to \Box \varphi$
$\Box \varphi \to \Box (\psi \to \varphi)$	$\Box \Diamond \varphi \to \psi$
$\neg \Diamond \varphi \to \Box(\varphi \to \psi)$	$\Box\Box\varphi\to\Box\varphi$
$\Diamond(\varphi \lor \psi) \leftrightarrow (\Diamond \varphi \lor \Diamond \psi)$	$\Box \Diamond \varphi \to \Diamond \Box \varphi.$

Table 1: Valid and (or?) invalid schemas.

nml:syn:sch: tab:valid-invalidSchemas

Proof. The "if" direction is obvious, since φ is a substitution instance of itself.

To prove the "only if" direction, we show the following: Suppose $\mathfrak{M} = \langle W, R, V \rangle$ is a modal model, and $\psi \equiv \varphi[\theta_1/p_1, \ldots, \theta_n/p_n]$ is a substitution instance of φ . Define $\mathfrak{M}' = \langle W, R, V' \rangle$ by $V'(p_i) = \{w : \mathfrak{M}, w \Vdash \theta_i\}$. Then $\mathfrak{M}, w \Vdash \psi$ iff $\mathfrak{M}', w \Vdash \varphi$, for any $w \in W$. (We leave the proof as an exercise.) Now suppose that φ was valid, but some substitution instance ψ of φ was not valid. Then for some $\mathfrak{M} = \langle W, R, V \rangle$ and some $w \in W, \mathfrak{M}, w \nvDash \psi$. But then $\mathfrak{M}', w \nvDash \varphi$ by the claim, and φ is not valid, a contradiction.

Problem syn.2. Prove the claim in the "only if" part of the proof of Proposition syn.6. (Hint: use induction on φ .)

Note, however, that it is not true that a schema is true in a model iff its characteristic formula is. Of course, the "only if" direction holds: if every instance of φ is true in \mathfrak{M} , φ itself is true in \mathfrak{M} . But it may happen that φ is true in \mathfrak{M} but some instance of φ is false at some world in \mathfrak{M} . For a very simple counterexample consider p in a model with only one world w and $V(p) = \{w\}$, so that p is true at w. But \perp is an instance of p, and not true at w.

Problem syn.3. Show that none of the following formulas are valid:

- D: $\Box p \to \Diamond p;$
- T: $\Box p \rightarrow p;$
- B: $p \to \Box \Diamond p;$
- 4: $\Box p \rightarrow \Box \Box p;$
- 5: $\Diamond p \to \Box \Diamond p$.

Problem syn.4. Prove that the schemas in the first column of Table 1 are valid and those in the second column are not valid.

Problem syn.5. Decide whether the following schemas are valid or invalid:

1.
$$(\Diamond \varphi \to \Box \psi) \to (\Box \varphi \to \Box \psi);$$

schemas rev: f0ceba3 (2023-09-14) by OLP / CC-BY

2. $\Diamond(\varphi \to \psi) \lor \Box(\psi \to \varphi)$.

Problem syn.6. For each of the following schemas find a model \mathfrak{M} such that every instance of the formula is true in \mathfrak{M} :

1. $p \rightarrow \Diamond \Diamond p;$

2. $\Diamond p \rightarrow \Box p$.

Photo Credits

Bibliography