The basic concept of semantics for normal modal logics is that of a \textit{relational model}. It consists of a set of worlds, which are related by a binary “accessibility relation,” together with an assignment which determines which \textit{propositional variables} count as “true” at which worlds.

\textbf{Definition syn.1.} A \textit{model} for the basic modal language is a triple $\mathfrak{M} = \langle W, R, V \rangle$, where

1. W is a nonempty set of “worlds,”
2. R is a binary accessibility relation on W, and
3. V is a function assigning to each \textit{propositional variable} p a set $V(p)$ of possible worlds.

When $Rw w'$ holds, we say that w' is \textit{accessible from} w. When $w \in V(p)$ we say p is \textit{true at} w.

The great advantage of relational semantics is that models can be represented by means of simple diagrams, such as the one in \textbf{Figure 1}. Worlds are represented by nodes, and world w' is accessible from w precisely when there is an arrow from w to w'. Moreover, we label a node (world) by p when $w \in V(p)$, and otherwise by $\neg p$. \textbf{Figure 1} represents the model with $W = \{w_1, w_2, w_3\}$, $R = \{(w_1, w_2), (w_1, w_3)\}$, $V(p) = \{w_1, w_2\}$, and $V(q) = \{w_2\}$.

\textbf{Photo Credits}

\textbf{Bibliography}