seq.1 Rules for K

 $\begin{array}{c} \text{nml:seq:rul:} \\ \text{sec} \end{array}$

The rules for the regular propositional connectives are the same as for regular sequent calculus **LK**. Axioms are also the same: any sequent of the form $\varphi \Rightarrow \varphi$ counts as an axiom.

For the modal operators \square and \lozenge , we have the following additional rules:

$$\frac{\varGamma \Rightarrow \varDelta, \varphi}{\Box \varGamma \Rightarrow \Diamond \varDelta, \Box \varphi} \, \Box \qquad \frac{\varphi, \varGamma \Rightarrow \varDelta}{\Diamond \varphi, \Box \varGamma \Rightarrow \Diamond \varDelta} \, \Diamond$$

Here, $\Box \Gamma$ means the sequence of formulas resulting from Γ by putting \Box in front of every formula in Γ and $\Diamond \Delta$ is the sequence of formulas resulting from Δ by putting \Diamond in front of every formula in Δ . Γ and Δ may be empty; in that case the corresponding part $\Box \Gamma$ and $\Diamond \Delta$ of the conclusion sequent is empty as well.

The restriction of adding a \square on the right and \lozenge on the left to a single formula φ is necessary. If we allowed to add \square to any number of formulas on the right or to add \lozenge to any number of formulas on the left we would be able to derive:

$$\frac{\varphi \Rightarrow \varphi}{\Rightarrow \varphi, \neg \varphi} \neg R$$

$$\Rightarrow \Box \varphi, \Box \neg \varphi$$

$$\Rightarrow \Box \varphi \lor \Box \neg \varphi$$

$$\lor R$$

$$\frac{\varphi \Rightarrow \varphi}{\neg \varphi, \varphi \Rightarrow} \neg L$$

$$\frac{\Diamond \neg \varphi, \varphi \Rightarrow}{\Diamond \neg \varphi} \neg R$$

$$\frac{\Diamond \neg \varphi, \Diamond \varphi \Rightarrow}{\Diamond \neg \varphi} \neg R$$

$$\frac{\Diamond \varphi \Rightarrow \neg \Diamond \neg \varphi}{\Rightarrow \Diamond \varphi \rightarrow \neg \Diamond \neg \varphi} \rightarrow R$$

But $\Box \varphi \lor \Box \neg \varphi$ and $\Diamond \varphi \to \neg \Diamond \neg \varphi$ are not valid in **K**.

If we allowed side formulas in addition to φ in the premise, and allowed the \square rule to add \square to only φ on the right, or allowed the \lozenge rule to add \lozenge to only φ on the left (but do nothing to the side formulas) we would be able to derive:

$$\frac{\varphi \Rightarrow \varphi}{\Rightarrow \varphi, \neg \varphi} \neg R$$

$$\frac{\Rightarrow \varphi, \neg \varphi}{\Rightarrow \neg \varphi, \varphi} XR$$

$$\Rightarrow \neg \varphi, \varphi \square \varphi$$

$$\Rightarrow \neg \varphi, \varphi \square \varphi$$

$$\Rightarrow \neg \varphi, \varphi \square \varphi$$

$$\Rightarrow \neg \varphi, \varphi \Rightarrow \neg \Diamond \neg \varphi$$

$$\frac{\langle \neg \varphi, \varphi \Rightarrow \neg \Diamond \neg \varphi \neg R \rangle}{\Rightarrow \varphi \rightarrow \neg \Diamond \neg \varphi} \rightarrow R$$

$$\Rightarrow \varphi \Rightarrow \neg \Diamond \neg \varphi \rightarrow R$$

$$\Rightarrow \varphi \Rightarrow \neg \Diamond \neg \varphi \rightarrow R$$

But $\neg \varphi \lor \Box \varphi$ (which is equivalent to $\varphi \to \Box \varphi$) and $\varphi \to \neg \Diamond \neg \varphi$ are not valid in **K**.

Photo Credits

Bibliography