frd.1 Second-order Definability

Definition frd.1. The standard translation $ST_x(\varphi)$ is inductively defined as follows:

1.
$$\varphi \equiv \bot$$
: $\operatorname{ST}_{x}(\varphi) = \bot$.
2. $\varphi \equiv \bot$: $\operatorname{ST}_{x}(\varphi) = \top$.
3. $\varphi \equiv p_{i}$: $\operatorname{ST}_{x}(\varphi) = P_{i}(x)$.
4. $\varphi \equiv \neg \psi$: $\operatorname{ST}_{x}(\varphi) = \neg \operatorname{ST}_{x}(\psi)$.
5. $\varphi \equiv (\psi \land \chi)$: $\operatorname{ST}_{x}(\varphi) = (\operatorname{ST}_{x}(\psi) \land \operatorname{ST}_{x}(\chi))$.
6. $\varphi \equiv (\psi \lor \chi)$: $\operatorname{ST}_{x}(\varphi) = (\operatorname{ST}_{x}(\psi) \lor \operatorname{ST}_{x}(\chi))$.
7. $\varphi \equiv (\psi \to \chi)$: $\operatorname{ST}_{x}(\varphi) = (\operatorname{ST}_{x}(\psi) \to \operatorname{ST}_{x}(\chi))$.
8. $\varphi \equiv (\psi \leftrightarrow \chi)$: $\operatorname{ST}_{x}(\varphi) = (\operatorname{ST}_{x}(\psi) \leftrightarrow \operatorname{ST}_{x}(\chi))$.
9. $\varphi \equiv \Box \psi$: $\operatorname{ST}_{x}(\varphi) = \forall y (Q(x, y) \to \operatorname{ST}_{y}(\psi))$.
10. $\varphi \equiv \Diamond \psi$: $\operatorname{ST}_{x}(\varphi) = \exists y (Q(x, y) \land \operatorname{ST}_{y}(\psi))$.

For instance, $\operatorname{ST}_x(\Box p \to p)$ is $\forall y (Q(x, y) \to P(y)) \to P(x)$. Any structure for the language of $\operatorname{ST}_x(\varphi)$ requires a domain, a two-place relation assigned to Q, and subsets of the domain assigned to the one-place predicate symbols P_i . In other words, the components of such a structure are exactly those of a model for φ : the domain is the set of worlds, the two-place relation assigned to Q is the accessibility relation, and the subsets assigned to P_i are just the assignments $V(\rho_i)$. It won't surprise that satisfaction of φ in a modal model and of $\operatorname{ST}_x(\varphi)$ in the corresponding structure agree:

nml:frd:st: **Proposition frd.2.** Let $\mathfrak{M} = \langle W, R, V \rangle$, \mathfrak{M}' be the first-order structure with *prop:st* $|\mathfrak{M}'| = W$, $Q^{\mathfrak{M}'} = R$, and $P_i^{\mathfrak{M}'} = V(p_i)$, and s(x) = w. Then

$$\mathfrak{M}, w \Vdash \varphi$$
 iff $\mathfrak{M}', s \vDash \mathrm{ST}_x(\varphi)$

Proof. By induction on φ .

1

second-order-definability rev: 6c541de (2024-02-28) by OLP / CC-BY

Proposition frd.3. Suppose φ is a modal formula and $\mathfrak{F} = \langle W, R \rangle$ is a frame. Let \mathfrak{F}' be the first-order structure with $|\mathfrak{F}'| = W$ and $Q^{\mathfrak{F}'} = R$, and let φ' be the second-order formula

$$\forall X_1 \ldots \forall X_n \,\forall x \,\mathrm{ST}_x(\varphi) [X_1/P_1, \ldots, X_n/P_n],$$

where P_1, \ldots, P_n are all one-place predicate symbols in $ST_x(\varphi)$. Then

$$\mathfrak{F} \vDash \varphi \ iff \ \mathfrak{F}' \vDash \varphi'$$

Proof. $\mathfrak{F}' \models \varphi'$ iff for every structure \mathfrak{M}' where $P_i^{\mathfrak{M}'} \subseteq W$ for $i = 1, \ldots, n$, and for every s with $s(x) \in W$, $\mathfrak{M}', s \models \operatorname{ST}_x(\varphi)$. By Proposition frd.2, that is the case iff for all models \mathfrak{M} based on \mathfrak{F} and every world $w \in W$, $\mathfrak{M}, w \Vdash \varphi$, i.e., $\mathfrak{F} \models \varphi$.

Definition frd.4. A class \mathcal{F} of frames is *second-order definable* if there is a sentence φ in the second-order language with a single two-place predicate symbol P and quantifiers only over monadic set variables such that $\mathfrak{F} = \langle W, R \rangle \in \mathcal{F}$ iff $\mathfrak{M} \models \varphi$ in the structure \mathfrak{M} with $|\mathfrak{M}| = W$ and $P^{\mathfrak{M}} = R$.

Corollary frd.5. If a class of frames is definable by a formula φ , the corresponding class of accessibility relations is definable by a monadic second-order sentence.

Proof. The monadic second-order sentence φ' of the preceding proof has the required property.

As an example, consider again the formula $\Box p \to p$. It defines reflexivity. Reflexivity is of course first-order definable by the sentence $\forall x Q(x, x)$. But it is also definable by the monadic second-order sentence

$$\forall X \,\forall x \,(\forall y \,(Q(x,y) \to X(y)) \to X(x)).$$

This means, of course, that the two sentences are equivalent. Here's how you might convince yourself of this directly: First suppose the second-order sentence is true in a structure \mathfrak{M} . Since x and X are universally quantified, the remainder must hold for any $x \in W$ and set $X \subseteq W$, e.g., the set $\{z : Rxz\}$ where $R = Q^{\mathfrak{M}}$. So, for any s with $s(x) \in W$ and $s(X) = \{z : Rxz\}$ we have $\mathfrak{M} \models \forall y (Q(x, y) \to X(y)) \to X(x)$. But by the way we've picked s(X) that means $\mathfrak{M}, s \models \forall y (Q(x, y) \to Q(x, y)) \to Q(x, x)$, which is equivalent to Q(x, x)since the antecedent is valid. Since s(x) is arbitrary, we have $\mathfrak{M} \models \forall x Q(x, x)$.

Now suppose that $\mathfrak{M} \vDash \forall x Q(x, x)$ and show that $\mathfrak{M} \vDash \forall X \forall x (\forall y (Q(x, y) \rightarrow X(y)) \rightarrow X(x))$. Pick any assignment s, and assume $\mathfrak{M}, s \vDash \forall y (Q(x, y) \rightarrow X(y))$. Let s' be the y-variant of s with s'(y) = s(x); we have $\mathfrak{M}, s' \vDash Q(x, y) \rightarrow X(y)$, i.e., $\mathfrak{M}, s \vDash Q(x, x) \rightarrow X(x)$. Since $\mathfrak{M} \vDash \forall x Q(x, x)$, the antecedent is true, and we have $\mathfrak{M}, s \vDash X(x)$, which is what we needed to show.

Since some definable classes of frames are not first-order definable, not every monadic second-order sentence of the form φ' is equivalent to a first-order sentence. There is no effective method to decide which ones are.

Photo Credits

Bibliography