frd.1 Second-order Definability

Not every frame property definable by modal formulas is first-order definable. However, if we allow quantification over one-place predicates (i.e., monadic second-order quantification), we define all modally definable frame properties. The trick is to exploit a systematic way in which the conditions under which a modal formula is true at a world are related to first-order formulas. This is the so-called standard translation of modal formulas into first-order formulas in a language containing not just a two-place predicate symbol \(Q \) for the accessibility relation, but also a one-place predicate symbol \(P_i \) for the propositional variables \(p_i \) occurring in \(\varphi \).

Definition frd.1. The standard translation \(\text{ST}_x(\varphi) \) is inductively defined as follows:

1. \(\varphi \equiv \bot \): \(\text{ST}_x(\varphi) = \bot \).
2. \(\varphi \equiv \top \): \(\text{ST}_x(\varphi) = \top \).
3. \(\varphi \equiv p_i \): \(\text{ST}_x(\varphi) = P_i(x) \).
4. \(\varphi \equiv \neg \psi \): \(\text{ST}_x(\varphi) = \neg \text{ST}_x(\psi) \).
5. \(\varphi \equiv (\psi \land \chi) \): \(\text{ST}_x(\varphi) = (\text{ST}_x(\psi) \land \text{ST}_x(\chi)) \).
6. \(\varphi \equiv (\psi \lor \chi) \): \(\text{ST}_x(\varphi) = (\text{ST}_x(\psi) \lor \text{ST}_x(\chi)) \).
7. \(\varphi \equiv (\psi \rightarrow \chi) \): \(\text{ST}_x(\varphi) = (\text{ST}_x(\psi) \rightarrow \text{ST}_x(\chi)) \).
8. \(\varphi \equiv (\psi \leftrightarrow \chi) \): \(\text{ST}_x(\varphi) = (\text{ST}_x(\psi) \leftrightarrow \text{ST}_x(\chi)) \).
9. \(\varphi \equiv \Box \psi \): \(\text{ST}_x(\varphi) = \forall y (Q(x, y) \rightarrow \text{ST}_y(\psi)) \).
10. \(\varphi \equiv \Diamond \psi \): \(\text{ST}_x(\varphi) = \exists y (Q(x, y) \land \text{ST}_y(\psi)) \).

For instance, \(\text{ST}_x(\Box p \rightarrow p) \) is \(\forall y (Q(x, y) \rightarrow P(y)) \rightarrow P(x) \). Any structure for the language of \(\text{ST}_x(\varphi) \) requires a domain, a two-place relation assigned to \(Q \), and subsets of the domain assigned to the one-place predicate symbols \(P_i \). In other words, the components of such a structure are exactly those of a model for \(\varphi \): the domain is the set of worlds, the two-place relation assigned to \(Q \) is the accessibility relation, and the subsets assigned to \(P_i \) are just the assignments \(V(p_i) \). It won’t surprise that satisfaction of \(\varphi \) in a modal model and of \(\text{ST}_x(\varphi) \) in the corresponding structure agree:

Proposition frd.2. Let \(\mathcal{M} = \langle W, R, V \rangle \), \(\mathcal{M}' \) be the first-order structure with \(|\mathcal{M}'| = W \), \(Q^{\mathcal{M}'} = R \), and \(P_i^{\mathcal{M}'} = V(p_i) \), and \(s(x) = w \). Then

\[\mathcal{M}, w \models \varphi \iff \mathcal{M}', s \models \text{ST}_x(\varphi) \]

Proof. By induction on \(\varphi \).

second-order-definability rev: c9d2ed6 (2023-09-14) by OLP / CC–BY
Proposition frd.3. Suppose \(\varphi \) is a modal formula and \(\mathfrak{F} = \langle W, R \rangle \) is a frame. Let \(\mathfrak{F}' = \langle W', R' \rangle \) be the first-order structure with \(|\mathfrak{F}'| = W \) and \(Q^{\mathfrak{F}'} = R' \), and let \(\varphi' \) be the second-order formula
\[
\forall X_1 \ldots \forall X_n \forall x \text{ST}_x(\varphi)[X_1/P_1, \ldots, X_n/P_n],
\]
where \(P_1, \ldots, P_n \) are all one-place predicate symbols in \(\text{ST}_x(\varphi) \). Then
\[
\mathfrak{F} \models \varphi \iff \mathfrak{F}' \models \varphi'.
\]
Proof. \(\mathfrak{F} \models \varphi \iff \mathfrak{F}' \models \varphi' \)

Definition frd.4. A class \(\mathcal{F} \) of frames is second-order definable if there is a sentence \(\varphi \) in the second-order language with a single two-place predicate symbol \(P \) and quantifiers only over monadic set variables such that \(\mathfrak{F} = \langle W, R \rangle \in \mathcal{F} \iff \mathfrak{M} \models \varphi \) in the structure \(\mathfrak{M} \) with \(|\mathfrak{M}| = W \) and \(P^{\mathfrak{M}} = R \).

Corollary frd.5. If a class of frames is definable by a formula \(\varphi \), the corresponding class of accessibility relations is definable by a monadic second-order sentence.

Proof. The monadic second-order sentence \(\varphi' \) of the preceding proof has the required property. \(\square \)

As an example, consider again the formula \(\Box p \rightarrow p \). It defines reflexivity. Reflexivity is of course first-order definable by the sentence \(\forall x Q(x, x) \). But it is also definable by the monadic second-order sentence
\[
\forall X \forall x (\forall y (Q(x, y) \rightarrow X(y)) \rightarrow X(x)).
\]
This means, of course, that the two sentences are equivalent. Here’s how you might convince yourself of this directly: First suppose the second-order sentence is true in a structure \(\mathfrak{M} \). Since \(x \) and \(X \) are universally quantified, the remainder must hold for any \(x \in W \) and set \(X \subseteq W \), e.g., the set \(\{ z : Rxz \} \) where \(R = Q^{\mathfrak{M}} \). So, for any \(s \) with \(s(x) \in W \) and \(s(X) = \{ z : Rxz \} \) we have \(\mathfrak{M} \models \forall y (Q(x, y) \rightarrow X(y)) \rightarrow X(x) \). But by the way we’ve picked \(s(X) \) that means \(\mathfrak{M}, s \models \forall y (Q(x, y) \rightarrow X(y)) \rightarrow Q(x, x) \), which is equivalent to \(Q(x, x) \) since the antecedent is valid. Since \(s(x) \) is arbitrary, we have \(\mathfrak{M} \models \forall x Q(x, x) \).

Now suppose that \(\mathfrak{M} \models \forall x Q(x, x) \) and show that \(\mathfrak{M} \models \forall X \forall x (\forall y (Q(x, y) \rightarrow X(y)) \rightarrow X(x)) \). Pick any assignment \(s \), and assume \(\mathfrak{M}, s \models \forall y (Q(x, y) \rightarrow X(y)) \). Let \(s' \) be the \(y \)-variant of \(s \) with \(s'(y) = s(x) \); we have \(\mathfrak{M}, s' \models Q(x, y) \rightarrow X(y) \), i.e., \(\mathfrak{M}, s \models Q(x, x) \rightarrow X(x) \). Since \(\mathfrak{M} \models \forall x Q(x, x) \), the antecedent is true, and we have \(\mathfrak{M}, s \models X(x) \), which is what we needed to show.

Since some definable classes of frames are not first-order definable, not every monadic second-order sentence of the form \(\varphi' \) is equivalent to a first-order sentence. There is no effective method to decide which ones are.
Photo Credits

Bibliography