Examples of Filtrations fil.1

mod:fil:exf:

We have not yet shown that there are any filtrations. But indeed, for any model \mathfrak{M} , there are many filtrations of \mathfrak{M} through Γ . We identify two, in particular: the finest and coarsest filtrations. Filtrations of the same models will differ in their accessibility relation (as ?? stipulates directly what W^* and V^* should be). The finest filtration will have as few related worlds as possible, whereas the coarsest will have as many as possible.

Definition fil.1. Where Γ is closed under subformulas, the *finest* filtration \mathfrak{M}^* of a model \mathfrak{M} is defined by putting:

$$R^*[u][v]$$
 if and only if $\exists u' \in [u] \ \exists v' \in [v] : Ru'v'$.

prop:finest

mod:fil:exf: Proposition fil.2. The finest filtration \mathfrak{M}^* is indeed a filtration.

Proof. We need to check that R^* , so defined, satisfies ????. We check the three conditions in turn.

If Ruv then since $u \in [u]$ and $v \in [v]$, also $R^*[u][v]$, so ?? is satisfied.

For ??, suppose $\Box \varphi \in \Gamma$, $R^*[u][v]$, and $\mathfrak{M}, u \Vdash \Box \varphi$. By definition of R^* , there are $u' \equiv u$ and $v' \equiv v$ such that Ru'v'. Since u and u' agree on Γ , also $\mathfrak{M}, u' \Vdash \Box \varphi$, so that $\mathfrak{M}, v' \Vdash \varphi$. By closure of Γ under sub-formulas, v and v'agree on φ , so $\mathfrak{M}, v \Vdash \varphi$, as desired.

To verify ??, suppose $\Diamond \varphi \in \Gamma$, $R^*[u][v]$, and $\mathfrak{M}, v \Vdash \varphi$. By definition of R^* , there are $u' \equiv u$ and $v' \equiv v$ such that Ru'v'. Since v and v' agree on Γ , and Γ is closed under sub-formulas, also $\mathfrak{M}, v' \Vdash \varphi$, so that $\mathfrak{M}, u' \Vdash \Diamond \varphi$. Since u and u' also agree on Γ , \mathfrak{M} , $u \Vdash \Diamond \varphi$.

Problem fil.1. Complete the proof of Proposition fil.2.

Definition fil.3. Where Γ is closed under subformulas, the *coarsest* filtration \mathfrak{M}^* of a model \mathfrak{M} is defined by putting $R^*[u][v]$ if and only if both of the following conditions are met:

mod:fil:exf: defn:coarsest-Box mod:fil:exf: defn:coarsest-Diamond

- 1. If $\Box \varphi \in \Gamma$ and $\mathfrak{M}, u \Vdash \Box \varphi$ then $\mathfrak{M}, v \Vdash \varphi$;
- 2. If $\Diamond \varphi \in \Gamma$ and $\mathfrak{M}, v \Vdash \varphi$ then $\mathfrak{M}, u \Vdash \Diamond \varphi$.

Proposition fil.4. The coarsest filtration \mathfrak{M}^* is indeed a filtration.

Proof. Given the definition of R^* , the only condition that is left to verify is the implication from Ruv to $R^*[u][v]$. So assume Ruv. Suppose $\Box \varphi \in \Gamma$ and $\mathfrak{M}, u \Vdash \Box \varphi$; then obviously $\mathfrak{M}, v \Vdash \varphi$, and (1) is satisfied. Suppose $\Diamond \varphi \in \Gamma$ and $\mathfrak{M}, v \Vdash \varphi$. Then $\mathfrak{M}, u \Vdash \Diamond \varphi$ since Ruv, and (2) is satisfied.

Example fil.5. Let $W = \mathbb{Z}^+$, Rnm iff m = n + 1, and $V(p) = \{2n : n \in \mathbb{N}\}$. The model $\mathfrak{M} = \langle W, R, V \rangle$ is depicted in Figure 1. The worlds are 1, 2, etc.; each world can access exactly one other world—its successor, and p is true at all and only the even numbers.

Figure 1: An infinite model and its filtrations.

mod:fil:exf: fig:ex-filtration

Now let Γ be the set of sub-formulas of $\Box p \to p$, i.e., $\{p, \Box p, \Box p \to p\}$. p is true at all and only the even numbers, $\Box p$ is true at all and only the odd numbers, so $\Box p \to p$ is true at all and only the even numbers. In other words, every odd number makes $\Box p$ true and p and $\Box p \to p$ false; every even number makes p and $p \to p$ true, but $p \to p$ false. So $p \to p$ false, where $p \to p$ true, but $p \to p$ false. So $p \to p$ false, where $p \to p$ false. So $p \to p$ false, where $p \to p$ false, $p \to p$ false. So $p \to p$ false, where $p \to p$ false, $p \to p$ false,

Any filtration based on W^* must have an accessibility relation that includes $\langle [1], [2] \rangle, \langle [2], [1] \rangle$: since R12, we must have $R^*[1][2]$ by ????, and since R23 we must have $R^*[2][3]$, and [3] = [1]. It cannot include $\langle [1], [1] \rangle$: if it did, we'd have $R^*[1][1]$, $\mathfrak{M}, 1 \Vdash \Box p$ but $\mathfrak{M}, 1 \Vdash p$, contradicting ??. Nothing requires or rules out that $R^*[2][2]$. So, there are two possible filtrations of \mathfrak{M} , corresponding to the two accessibility relations

$$\{\langle [1], [2] \rangle, \langle [2], [1] \rangle\} \text{ and } \{\langle [1], [2] \rangle, \langle [2], [1] \rangle, \langle [2], [2] \rangle\}.$$

In either case, p and $\Box p \to p$ are false and $\Box p$ is true at [1]; p and $\Box p \to p$ are true and $\Box p$ is false at [2].

Problem fil.2. Consider the following model $\mathfrak{M} = \langle W, R, V \rangle$ where $W = \mathbb{B}^* \setminus \{1\sigma : \sigma \in \mathbb{B}^*\} \setminus \{\Lambda\}$, the set of sequences of 0s and 1s starting with 0, with $R\sigma\sigma'$ iff $\sigma' = \sigma 0$ or $\sigma' = \sigma 1$, and $V(p) = \{\sigma 0 : \sigma \in \mathbb{B}^*\}$ and $V(q) = \{\sigma 1 : \sigma \in \mathbb{B}^* \setminus \{1\}\}$. Here's a picture:

We have $\mathfrak{M}, w \nvDash \Box (p \lor q) \to (\Box p \lor \Box q)$ for every w.

Let Γ be the set of sub-formulas of $\Box(p \lor q) \to (\Box p \lor \Box q)$. What are W^* an V^* ? What is the accessibility relation of the finest filtration of \mathfrak{M} ? Of the coarsest?

Photo Credits

Bibliography