fil.1 K and S5 have the Finite Model Property

Definition fil.1. A system Σ of modal logic is said to have the finite model property if whenever a formula φ is true at a world in a model of Σ then φ is true at a world in a finite model of Σ.

Proposition fil.2. K has the finite model property.

Proof. K is the set of valid formulas, i.e., any model is a model of K. By ??, if $\mathfrak{M}, w \models \varphi$, then $\mathfrak{M}^*, w \models \varphi$ for any filtration of \mathfrak{M} through the set Γ of sub-formulas of φ. Any formula only has finitely many sub-formulas, so Γ is finite. By ??, $|W^*| \leq 2^n$, where n is the number of formulas in Γ. And since K imposes no restriction on models, \mathfrak{M}^* is a K-model.

To show that a logic L has the finite model property via filtrations it is essential that the filtration of an L-model is itself a L-model. Often this requires a fair bit of work, and not any filtration yields a L-model. However, for universal models, this still holds.

Proposition fil.3. Let \mathcal{U} be the class of universal models (see ??) and \mathcal{U}_{Fin} the class of all finite universal models. Then any formula φ is valid in \mathcal{U} if and only if it is valid in \mathcal{U}_{Fin}.

Proof. Finite universal models are universal models, so the left-to-right direction is trivial. For the right-to left direction, suppose that φ is false at some world w in a universal model \mathfrak{M}. Let Γ contain φ as well as all of its subformulas; clearly Γ is finite. Take a filtration \mathfrak{M}^* of \mathfrak{M}; then \mathfrak{M}^* is finite by ??, and by ??, φ is false at $[w]$ in \mathfrak{M}^*. It remains to observe that \mathfrak{M}^* is also universal: given u and v, by hypothesis Ruv and by ???, also $R^*[u][v]$.

Corollary fil.4. S5 has the finite model property.

Proof. By ??, if φ is true at a world in some reflexive and euclidean model then it is true at a world in a universal model. By Proposition fil.3, it is true at a world in a finite universal model (namely the filtration of the model through the set of sub-formulas of φ). Every universal model is also reflexive and euclidean; so φ is true at a world in a finite reflexive euclidean model.

Problem fil.1. Show that any filtration of a serial or reflexive model is also serial or reflexive (respectively).

Problem fil.2. Find a non-symmetric (non-transitive, non-euclidean) filtration of a symmetric (transitive, euclidean) model.
Photo Credits

Bibliography