Determination and Completeness for K

We are now prepared to use the canonical model to establish completeness. Completeness follows from the fact that the formulas true in the canonical model for Σ are exactly the Σ-derivable ones. Models with this property are said to determine Σ.

Definition com.1. A model \mathfrak{M} determines a normal modal logic Σ precisely when $\mathfrak{M} \models \varphi$ if and only if $\Sigma \vdash \varphi$, for all formulas φ.

Theorem com.2 (Determination). $\mathfrak{M}^\Sigma \models \varphi$ if and only if $\Sigma \vdash \varphi$.

Proof. If $\mathfrak{M}^\Sigma \models \varphi$, then for every complete Σ-consistent Δ, we have $\mathfrak{M}^\Sigma, \Delta \models \varphi$. Hence, by the Truth Lemma, $\varphi \in \Delta$ for every complete Σ-consistent Δ, whence by ?? (with $\Gamma = \emptyset$), $\Sigma \vdash \varphi$.

Conversely, if $\Sigma \vdash \varphi$ then by ??, every complete Σ-consistent Δ contains φ, and hence by the Truth Lemma, $\mathfrak{M}^\Sigma, \Delta \models \varphi$ for every $\Delta \in W^\Sigma$, i.e., $\mathfrak{M}^\Sigma \models \varphi$. \Box

Since the canonical model for K determines K, we immediately have completeness of K as a corollary:

Corollary com.3. The basic modal logic K is complete with respect to the class of all models, i.e., if $\models \varphi$ then $K \vdash \varphi$.

Proof. Contrapositively, if $K \not\vdash \varphi$ then by Determination $\mathfrak{M}^K \not\models \varphi$ and hence φ is not valid. \Box

For the general case of completeness of a system Σ with respect to a class of models, e.g., of $KTB4$ with respect to the class of reflexive, symmetric, transitive models, determination alone is not enough. We must also show that the canonical model for the system Σ is a member of the class, which does not follow obviously from the canonical model construction—nor is it always true!

Photo Credits

Bibliography