prf.1 Soundness

- nml:prf:snd: A derivation system is called sound if everything that can be derived is valid. When considering modal systems, i.e., derivations where in addition to K we can use instances of some formulas $\varphi_1, \ldots, \varphi_n$, we want every derivable formula to be true in any model in which $\varphi_1, \ldots, \varphi_n$ are true.
- *nml:prf:snd: thm:soundness* Theorem). If every instance of $\varphi_1, \ldots, \varphi_n$ *is valid in the classes of models* C_1, \ldots, C_n , *respectively, then* $\mathbf{K}\varphi_1 \ldots \varphi_n \vdash \psi$ *implies that* ψ *is valid in the class of models* $C_1 \cap \cdots \cap C_n$.

Proof. By induction on length of proofs. For brevity, put $\mathcal{C} = \mathcal{C}_1 \cap \cdots \cap \mathcal{C}_n$.

- 1. Induction Basis: If ψ has a proof of length 1, then it is either a tautological instance, an instance of K, or of DUAL, or an instance of one of $\varphi_1, \ldots, \varphi_n$. In the first case, ψ is valid in \mathcal{C} , since tautological instance are valid in *any* class of models, by ??. Similarly in the second case, by ?? and ??. Finally in the third case, since ψ is valid in \mathcal{C}_i and $\mathcal{C} \subseteq \mathcal{C}_i$, we have that ψ is valid in \mathcal{C} as well by ??.
- 2. Inductive step: Suppose ψ has a proof of length k > 1. If ψ is a tautological instance or an instance of one of $\varphi_1, \ldots, \varphi_n$, we proceed as in the previous step. So suppose ψ is obtained by MP from previous formulas $\chi \to \psi$ and χ . Then $\chi \to \psi$ and χ have proofs of length $\langle k$, and by inductive hypothesis they are valid in \mathcal{C} . By ??, ψ is valid in \mathcal{C} as well. Finally suppose ψ is obtained by NEC from χ (so that $\psi = \Box \chi$). By inductive hypothesis, χ is valid in \mathcal{C} , and by ?? so is ψ .

Photo Credits

Bibliography