A derivation system is called sound if everything that can be derived is valid. When considering modal systems, i.e., derivations where in addition to K we can use instances of some formulas $\varphi_1, \ldots, \varphi_n$, we want every derivable formula to be true in any model in which $\varphi_1, \ldots, \varphi_n$ are true.

Theorem prf.1 (Soundness Theorem). If every instance of $\varphi_1, \ldots, \varphi_n$ is valid in the classes of models C_1, \ldots, C_n, respectively, then $K\varphi_1 \ldots \varphi_n \vdash \psi$ implies that ψ is valid in the class of models $C_1 \cap \cdots \cap C_n$.

Proof. By induction on length of proofs. For brevity, put $C = C_1 \cap \cdots \cap C_n$.

1. **Induction Basis:** If ψ has a proof of length 1, then it is either a tautological instance, an instance of K, or of DUAL, or an instance of one of $\varphi_1, \ldots, \varphi_n$. In the first case, ψ is valid in C, since tautological instance are valid in any class of models, by ???. Similarly in the second case, by ?? and ???. Finally in the third case, since ψ is valid in C_i and $C \subseteq C_i$, we have that ψ is valid in C as well by ???.

2. **Inductive step:** Suppose ψ has a proof of length $k > 1$. If ψ is a tautological instance or an instance of one of $\varphi_1, \ldots, \varphi_n$, we proceed as in the previous step. So suppose ψ is obtained by MP from previous formulas $\chi \rightarrow \psi$ and χ. Then $\chi \rightarrow \psi$ and χ have proofs of length < k, and by inductive hypothesis they are valid in C. By ??, ψ is valid in C as well. Finally suppose ψ is obtained by NEC from χ (so that $\psi = \Box \chi$). By inductive hypothesis, χ is valid in C, and by ?? so is ψ. \square

Photo Credits

Bibliography