Consistency

Consistency is an important property of sets of formulas. A set of formulas is inconsistent if a contradiction, such as ⊥, is derivable from it; and otherwise consistent. If a set is inconsistent, its formulas cannot all be true in a model at a world. For the completeness theorem we prove the converse: every consistent set is true at a world in a model, namely in the “canonical model.”

Definition prf.1. A set \(\Gamma \) is consistent relatively to a system \(\Sigma \) or, as we will say, \(\Sigma \)-consistent, if and only if \(\Gamma \nvdash \Sigma \perp \).

So for instance, the set \{\(\Box(p \rightarrow q), \Box p, \neg \Box q \}\} is consistent relatively to propositional logic, but not \(K\)-consistent. Similarly, the set \{\(\Diamond p, \Box \Diamond p \rightarrow q, \neg q \}\} is not \(K5\)-consistent.

Proposition prf.2. Let \(\Gamma \) be a set of formulas. Then:

1. \(\Gamma \) is \(\Sigma \)-consistent if and only if there is some formula \(\varphi \) such that \(\Gamma \nvdash \Sigma \varphi \).
2. \(\Gamma \vdash_\Sigma \varphi \) if and only if \(\Gamma \cup \{\neg \varphi\} \) is not \(\Sigma \)-consistent.
3. If \(\Gamma \) is \(\Sigma \)-consistent, then for any formula \(\varphi \), either \(\Gamma \cup \{\varphi\} \) is \(\Sigma \)-consistent or \(\Gamma \cup \{\neg \varphi\} \) is \(\Sigma \)-consistent.

Proof. These facts follow easily using classical propositional logic. We give the argument for (3). Proceed contrapositively and suppose neither \(\Gamma \cup \{\varphi\} \) nor \(\Gamma \cup \{\neg \varphi\} \) is \(\Sigma \)-consistent. Then by (2), both \(\Gamma, \varphi \vdash \perp \) and \(\Gamma, \neg \varphi \vdash \perp \). By the deduction theorem \(\Gamma \vdash_\Sigma \varphi \rightarrow \perp \) and \(\Gamma \vdash_\Sigma \neg \varphi \rightarrow \perp \). But \((\varphi \rightarrow \perp) \rightarrow ((\neg \varphi \rightarrow \perp) \rightarrow \perp)\) is a tautological instance, hence by \(???\), \(\Gamma \vdash \perp \). \(\square\)

Photo Credits

Bibliography