mar.1 Non-Standard Models

We call a structure for \(\mathcal{L}_A \) standard if it is isomorphic to \(\mathfrak{N} \). If a structure isn’t isomorphic to \(\mathfrak{N} \), it is called non-standard.

Definition mar.1. A structure \(\mathfrak{M} \) for \(\mathcal{L}_A \) is non-standard if it is not isomorphic to \(\mathfrak{N} \). The elements \(x \in |\mathfrak{M}| \) which are equal to \(\text{Val}_{\mathfrak{M}}(n) \) for some \(n \in \mathbb{N} \) are called standard numbers (of \(\mathfrak{M} \)), and those not, non-standard numbers.

By ??, any standard structure for \(\mathcal{L}_A \) contains only standard elements. Consequently, a non-standard structure must contain at least one non-standard element. In fact, the existence of a non-standard element guarantees that the structure is non-standard.

Proposition mar.2. If a structure \(\mathfrak{M} \) for \(\mathcal{L}_A \) contains a non-standard number, \(\mathfrak{M} \) is non-standard.

Proof. Suppose not, i.e., suppose \(\mathfrak{M} \) standard but contains a non-standard number \(x \). Let \(g: \mathbb{N} \to |\mathfrak{M}| \) be an isomorphism. It is easy to see (by induction on \(n \)) that \(g(\text{Val}^\mathfrak{N}(n)) = \text{Val}^\mathfrak{M}(n) \). In other words, \(g \) maps standard numbers of \(\mathfrak{N} \) to standard numbers of \(\mathfrak{M} \). If \(\mathfrak{M} \) contains a non-standard number, \(g \) cannot be surjective, contrary to hypothesis.

Problem mar.1. Recall that \(\mathbb{Q} \) contains the axioms
\[
\forall x \forall y (x' = y' \to x = y) \quad (Q_1)
\]
\[
\forall x x \neq x' \quad (Q_2)
\]
\[
\forall x (x = 0 \lor \exists y x = y') \quad (Q_3)
\]

Give structures \(\mathfrak{M}_1, \mathfrak{M}_2, \mathfrak{M}_3 \) such that

1. \(\mathfrak{M}_1 \models Q_1, \mathfrak{M}_1 \models Q_2, \mathfrak{M}_1 \not\models Q_3 \);
2. \(\mathfrak{M}_2 \models Q_1, \mathfrak{M}_2 \not\models Q_2, \mathfrak{M}_2 \models Q_3 \); and
3. \(\mathfrak{M}_3 \not\models Q_1, \mathfrak{M}_3 \models Q_2, \mathfrak{M}_3 \models Q_3 \);

Obviously, you just have to specify \(\mathfrak{M}_1, \mathfrak{M}_2, \mathfrak{M}_3 \) for each.

It is easy enough to specify non-standard structures for \(\mathcal{L}_A \). For instance, take the structure with domain \(\mathbb{Z} \) and interpret all non-logical symbols as usual. Since negative numbers are not values of \(\bar{\pi} \) for any \(n \), this structure is non-standard. Of course, it will not be a model of arithmetic in the sense that it makes the same sentences true as \(\mathfrak{N} \). For instance, \(\forall x x' \neq 0 \) is false. However, we can prove that non-standard models of arithmetic exist easily enough, using the compactness theorem.

Proposition mar.3. Let \(\text{TA} = \{ \varphi : \mathfrak{N} \models \varphi \} \) be the theory of \(\mathfrak{N} \). \(\text{TA} \) has an enumerable non-standard model.
Proof. Expand \mathcal{L}_A by a new constant symbol c and consider the set of sentences

$$\Gamma = \text{TA} \cup \{c \neq 0, c \neq 1, c \neq 2, \ldots \}$$

Any model \mathfrak{M}^c of Γ would contain an element $x = c^\mathfrak{M}$ which is non-standard, since $x \neq \text{Val}^\mathfrak{M}(\pi)$ for all $n \in \mathbb{N}$. Also, obviously, $\mathfrak{M}^c \models \text{TA}$, since $\text{TA} \subseteq \Gamma$. If we turn \mathfrak{M}^c into a structure \mathfrak{M} for \mathcal{L}_A simply by forgetting about c, its domain still contains the non-standard x, and also $\mathfrak{M} \models \text{TA}$. The latter is guaranteed since c does not occur in TA. So, it suffices to show that Γ has a model.

We use the compactness theorem to show that Γ has a model. If every finite subset of Γ is satisfiable, so is Γ. Consider any finite subset $\Gamma_0 \subseteq \Gamma$. Γ_0 includes some sentences of TA and some of the form $c \neq \pi$, but only finitely many. Suppose k is the largest number so that $c \neq k \in \Gamma_0$. Define \mathfrak{M}_k by expanding \mathfrak{M} to include the interpretation $c^\mathfrak{M}_k = k + 1$. $\mathfrak{M}_k \models \Gamma_0$: if $\varphi \in \text{TA}$, $\mathfrak{M}_k \models \varphi$ since \mathfrak{M}_k is just like \mathfrak{M} in all respects except c, and c does not occur in φ. And $\mathfrak{M}_k \models c \neq \pi$, since $n \leq k$, and $\text{Val}^\mathfrak{M}_k(c) = k + 1$. Thus, every finite subset of Γ is satisfiable. \hfill \Box

Photo Credits

Bibliography