mar.1 Non-Standard Models

We call a structure for \mathcal{L}_A standard if it is isomorphic to \mathcal{N}. If a structure isn’t isomorphic to \mathcal{N}, it is called non-standard.

Definition mar.1. A structure \mathcal{M} for \mathcal{L}_A is non-standard if it is not isomorphic to \mathcal{N}. The elements $x \in |\mathcal{M}|$ which are equal to $\text{Val}_\mathcal{M}(\pi)$ for some $n \in \mathbb{N}$ are called standard numbers (of \mathcal{M}), and those not, non-standard numbers.

By ??, any standard structure for \mathcal{L}_A contains only standard elements. Consequently, a non-standard structure must contain at least one non-standard element. In fact, the existence of a non-standard element guarantees that the structure is non-standard.

Proposition mar.2. If a structure \mathcal{M} for \mathcal{L}_A contains a non-standard number, \mathcal{M} is non-standard.

Proof. Suppose not, i.e., suppose \mathcal{M} standard but contains a non-standard number x. Let $g: \mathbb{N} \to |\mathcal{M}|$ be an isomorphism. It is easy to see (by induction on n) that $g(\text{Val}_\mathcal{N}(\pi)) = \text{Val}_\mathcal{M}(\pi)$. In other words, g maps standard numbers of \mathcal{N} to standard numbers of \mathcal{M}. If \mathcal{M} contains a non-standard number, g cannot be surjective, contrary to hypothesis.

Problem mar.1. Recall that \mathcal{Q} contains the axioms

\[
\forall x \forall y (x' = y' \to x = y) \quad (Q_1)
\]
\[
\forall x x \neq x' \quad (Q_2)
\]
\[
\forall x (x = 0 \lor \exists y x = y') \quad (Q_3)
\]

Give structures \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3 such that

1. $\mathcal{M}_1 \models Q_1$, $\mathcal{M}_1 \not\models Q_2$, $\mathcal{M}_1 \not\models Q_3$;
2. $\mathcal{M}_2 \models Q_1$, $\mathcal{M}_2 \not\models Q_2$, $\mathcal{M}_2 \models Q_3$; and
3. $\mathcal{M}_3 \not\models Q_1$, $\mathcal{M}_3 \models Q_2$, $\mathcal{M}_3 \models Q_3$;

Obviously, you just have to specify \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, for each.

It is easy enough to specify non-standard structures for \mathcal{L}_A. For instance, take the structure with domain \mathbb{Z} and interpret all non-logical symbols as usual. Since negative numbers are not values of π for any n, this structure is non-standard. Of course, it will not be a model of arithmetic in the sense that it makes the same sentences true as \mathcal{N}. For instance, $\forall x x' \neq 0$ is false. However, we can prove that non-standard models of arithmetic exist easily enough, using the compactness theorem.

Proposition mar.3. Let $\mathcal{T}A = \{ \varphi : \mathcal{N} \models \varphi \}$ be the theory of \mathcal{N}. $\mathcal{T}A$ has an enumerable non-standard model.
Proof. Expand \mathcal{L}_A by a new constant symbol c and consider the set of sentences

$$\Gamma = \text{TA} \cup \{c \neq 0, c \neq 1, c \neq 2, \ldots \}$$

Any model \mathfrak{M}^c of Γ would contain an element $x = c^n_{\mathfrak{M}}$ which is non-standard, since $x \neq \text{Val}^\mathfrak{M}(\pi)$ for all $n \in \mathbb{N}$. Also, obviously, $\mathfrak{M}^c \models \text{TA}$, since $\text{TA} \subseteq \Gamma$. If we turn \mathfrak{M}^c into a structure \mathfrak{M} for \mathcal{L}_A simply by forgetting about c, its domain still contains the non-standard x, and also $\mathfrak{M} \models \text{TA}$. The latter is guaranteed since c does not occur in TA. So, it suffices to show that Γ has a model.

We use the compactness theorem to show that Γ has a model. If every finite subset of Γ is satisfiable, so is Γ. Consider any finite subset $\Gamma_0 \subseteq \Gamma$. Γ_0 includes some sentences of TA and some of the form $c \neq n$, but only finitely many. Suppose k is the largest number so that $c \neq k \in \Gamma_0$. Define \mathfrak{M}_k by expanding \mathfrak{M} to include the interpretation $c^\mathfrak{M}_k = k + 1$. $\mathfrak{M}_k \models \Gamma_0$: if $\varphi \in \text{TA}$, $\mathfrak{M}_k \models \varphi$ since \mathfrak{M}_k is just like \mathfrak{M} in all respects except c, and c does not occur in φ. And $\mathfrak{M}_k \models c \neq n$, since $n \leq k$, and $\text{Val}^{\mathfrak{M}_k}(c) = k + 1$. Thus, every finite subset of Γ is satisfiable.

Photo Credits

Bibliography