mar.1 Non-Standard Models

We call a structure for L_A standard if it is isomorphic to \mathcal{N}. If a structure isn’t isomorphic to \mathcal{N}, it is called non-standard.

Definition mar.1. A structure \mathcal{M} for L_A is non-standard if it is not isomorphic to \mathcal{N}. The elements $x \in |\mathcal{M}|$ which are equal to $\text{Val}_M(n)$ for some $n \in \mathbb{N}$ are called standard numbers (of \mathcal{M}), and those not, non-standard numbers.

By ??, any standard structure for L_A contains only standard elements. Consequently, a non-standard structure must contain at least one non-standard element. In fact, the existence of a non-standard element guarantees that the structure is non-standard.

Proposition mar.2. If a structure \mathcal{M} for L_A contains a non-standard number, \mathcal{M} is non-standard.

Proof. Suppose not, i.e., suppose \mathcal{M} standard but contains a non-standard number x. Let $g: \mathbb{N} \to |\mathcal{M}|$ be an isomorphism. It is easy to see (by induction on n) that $g(\text{Val}_N(n)) = \text{Val}_M(n)$. In other words, g maps standard numbers of \mathcal{N} to standard numbers of \mathcal{M}. If \mathcal{M} contains a non-standard number, g cannot be surjective, contrary to hypothesis.

Problem mar.1. Recall that Q contains the axioms

\begin{align*}
\forall x \forall y (x' = y' \rightarrow x = y) & \quad (Q_1) \\
\forall x (x \neq x') & \quad (Q_2) \\
\forall x (x = 0 \lor \exists y x = y') & \quad (Q_3)
\end{align*}

Give structures \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3 such that

1. $\mathcal{M}_1 \models Q_1$, $\mathcal{M}_1 \models Q_2$, $\mathcal{M}_1 \not\models Q_3$;
2. $\mathcal{M}_2 \models Q_1$, $\mathcal{M}_2 \not\models Q_2$, $\mathcal{M}_2 \models Q_3$; and
3. $\mathcal{M}_3 \not\models Q_1$, $\mathcal{M}_3 \models Q_2$, $\mathcal{M}_3 \models Q_3$;

Obviously, you just have to specify $\varphi_{\mathcal{M}_i}$ for each.

It is easy enough to specify non-standard structures for L_A. For instance, take the structure with domain \mathbb{Z} and interpret all non-logical symbols as usual. Since negative numbers are not values of π for any n, this structure is non-standard. Of course, it will not be a model of arithmetic in the sense that it makes the same sentences true as \mathcal{N}. For instance, $\forall x x' \neq 0$ is false. However, we can prove that non-standard models of arithmetic exist easily enough, using the compactness theorem.

Proposition mar.3. Let $TA = \{ \varphi : \mathcal{N} \models \varphi \}$ be the theory of \mathcal{N}. TA has an enumerable non-standard model.
Proof. Expand \(\mathcal{L}_A \) by a new constant symbol \(c \) and consider the set of sentences
\[
\Gamma = \mathcal{T}A \cup \{ c \neq 0, c \neq 1, c \neq 2, \ldots \}
\]
Any model \(\mathcal{M}^c \) of \(\Gamma \) would contain an element \(x = x^\mathcal{M} \), which is non-standard, since \(x \neq \text{Val}^\mathcal{M}(\pi) \) for all \(n \in \mathbb{N} \). Also, obviously, \(\mathcal{M}^c \models \mathcal{T}A \), since \(\mathcal{T}A \subseteq \Gamma \). If we turn \(\mathcal{M}^c \) into a structure \(\mathcal{M} \) for \(\mathcal{L}_A \) simply by forgetting about \(c \), its domain still contains the non-standard \(x \), and also \(\mathcal{M} \models \mathcal{T}A \). The latter is guaranteed since \(c \) does not occur in \(\mathcal{T}A \). So, it suffices to show that \(\Gamma \) has a model.

We use the compactness theorem to show that \(\Gamma \) has a model. If every finite subset of \(\Gamma \) is satisfiable, so is \(\Gamma \). Consider any finite subset \(\Gamma_0 \subseteq \Gamma \). \(\Gamma_0 \) includes some sentences of \(\mathcal{T}A \) and some of the form \(c \neq \pi \), but only finitely many. Suppose \(k \) is the largest number so that \(c \neq k \in \Gamma_0 \). Define \(\mathcal{M}_k \) by expanding \(\mathcal{M} \) to include the interpretation \(c^\mathcal{M}_k = k + 1 \). \(\mathcal{M}_k \models \Gamma_0 \): if \(\varphi \in \mathcal{T}A \), \(\mathcal{M}_k \models \varphi \) since \(\mathcal{M}_k \) is just like \(\mathcal{M} \) in all respects except \(c \), and \(c \) does not occur in \(\varphi \). And \(\mathcal{M}_k \models c \neq \pi \), since \(n \leq k \), and \(\text{Val}^{\mathcal{M}_k}(c) = k + 1 \). Thus, every finite subset of \(\Gamma \) is satisfiable. \(\square \)

Photo Credits

Bibliography