Models of Q mar.1

We know that there are non-standard structures that make the same sentences explanation true as \mathfrak{N} does, i.e., is a model of **TA**. Since $\mathfrak{N} \models \mathbf{Q}$, any model of **TA** is also a model of **Q**. **Q** is much weaker than **TA**, e.g., $\mathbf{Q} \nvDash \forall x \forall y (x + y) = (y + x)$. Weaker theories are easier to satisfy: they have more models. E.g., \mathbf{Q} has models which make $\forall x \forall y (x + y) = (y + x)$ false, but those cannot also be models of **TA**, or **PA** for that matter. Models of **Q** are also relatively simple: we can specify them explicitly.

mod:mar:mdq: Example mar.1. Consider the structure \mathfrak{K} with domain $|\mathfrak{K}| = \mathbb{N} \cup \{a\}$ and ex:model-K-of-Q interpretations

$$\begin{split} \mathbf{o}^{\mathfrak{K}} &= 0\\ \mathbf{f}^{\mathfrak{K}}(x) = \begin{cases} x+1 & \text{if } x \in \mathbb{N} \\ a & \text{if } x = a \end{cases}\\ +^{\mathfrak{K}}(x,y) &= \begin{cases} x+y & \text{if } x, y \in \mathbb{N} \\ a & \text{otherwise} \end{cases}\\ \times^{\mathfrak{K}}(x,y) &= \begin{cases} xy & \text{if } x, y \in \mathbb{N} \\ 0 & \text{if } x = 0 \text{ or } y = 0 \\ a & \text{otherwise} \end{cases}\\ <^{\mathfrak{K}} &= \{\langle x, y \rangle : x, y \in \mathbb{N} \text{ and } x < y\} \cup \{\langle x, a \rangle : x \in |\mathfrak{K}|\} \end{split}$$

To show that $\mathfrak{K} \models \mathbf{Q}$ we have to verify that all axioms of \mathbf{Q} are true in \mathfrak{K} . For convenience, let's write x^* for $\ell^{\mathfrak{K}}(x)$ (the "successor" of x in \mathfrak{K}), $x \oplus y$ for $+^{\mathfrak{K}}(x,y)$ (the "sum" of x and y in $\mathfrak{K}, x \otimes y$ for $\times^{\mathfrak{K}}(x,y)$ (the "product" of x and y in \mathfrak{K}), and $x \otimes y$ for $\langle x, y \rangle \in \langle \mathfrak{K}$. With these abbreviations, we can give the operations in \mathfrak{K} more perspicuously as

r	· *	$x\oplus y$	0	m	a	$x\otimes y$	0	m	a	
n	$\frac{x^*}{n+1}$	0	0	m	a	0				
	$\begin{vmatrix} n+1\\a \end{vmatrix}$	n	n	n+m	a	n	0	nm	a	
a		a	a	a	a	a	0	a	a	

We have $n \otimes m$ iff n < m for $n, m \in \mathbb{N}$ and $x \otimes a$ for all $x \in |\mathfrak{K}|$.

 $\mathfrak{K} \vDash \forall x \forall y (x' = y' \rightarrow x = y)$ since * is injective. $\mathfrak{K} \vDash \forall x \circ \neq x'$ since 0 is not a *-successor in \mathfrak{K} . $\mathfrak{K} \models \forall x (x = \mathbf{0} \lor \exists y x = y')$ since for every n > 0, $n = (n - 1)^*$, and $a = a^*$.

 $\mathfrak{K} \models \forall x (x + 0) = x$ since $n \oplus 0 = n + 0 = n$, and $a \oplus 0 = a$ by definition of \oplus . $\mathfrak{K} \models \forall x \forall y (x + y') = (x + y)'$ is a bit trickier. If n, m are both standard, we have:

$$(n \oplus m^*) = (n + (m + 1)) = (n + m) + 1 = (n \oplus m)^*$$

models-of-q rev: 016d2bc (2024-06-22) by OLP / CC-BY

since \oplus and * agree with + and \prime on standard numbers. Now suppose $x \in |\mathfrak{K}|$. Then

$$(x \oplus a^*) = (x \oplus a) = a = a^* = (x \oplus a)^*$$

The remaining case is if $y \in |\mathfrak{K}|$ but x = a. Here we also have to distinguish cases according to whether y = n is standard or y = b:

$$(a \oplus n^*) = (a \oplus (n+1)) = a = a^* = (a \oplus n)^*$$

 $(a \oplus a^*) = (a \oplus a) = a = a^* = (a \oplus a)^*$

This is of course a bit more detailed than needed. For instance, since $a \oplus z = a$ whatever z is, we can immediately conclude $a \oplus a^* = a$. The remaining axioms can be verified the same way.

 \mathfrak{K} is thus a model of \mathbf{Q} . Its "addition" \oplus is also commutative. But there are other sentences true in \mathfrak{N} but false in \mathfrak{K} , and vice versa. For instance, $a \otimes a$, so $\mathfrak{K} \vDash \exists x \ x < x$ and $\mathfrak{K} \nvDash \forall x \ \neg x < x$. This shows that $\mathbf{Q} \nvDash \forall x \ \neg x < x$.

Problem mar.1. Prove that \mathfrak{K} from Example mar.1 satisfies the remaining axioms of \mathbf{Q} ,

$$\forall x \left(x \times \mathbf{0} \right) = \mathbf{0} \tag{Q_6}$$

$$\forall x \,\forall y \,(x \times y') = ((x \times y) + x) \tag{Q7}$$

$$\forall x \,\forall y \,(x < y \leftrightarrow \exists z \,(z' + x) = y) \tag{Q8}$$

Find a sentence only involving \prime true in \mathfrak{N} but false in \mathfrak{K} .

Example mar.2. Consider the structure \mathfrak{L} with domain $|\mathfrak{L}| = \mathbb{N} \cup \{a, b\}$ and modematical interpretations $\ell^{\mathfrak{L}} = *, +^{\mathfrak{L}} = \oplus$ given by

x	x^*	$x\oplus y$	m	a	b
\overline{n}	n+1	n	n+m	b	a
a	a	a	a	b	a
b	b	b	b	b	a

Since * is injective, 0 is not in its range, and every $x \in |\mathfrak{L}|$ other than 0 is, axioms Q_1-Q_3 are true in \mathfrak{L} . For any $x, x \oplus 0 = x$, so Q_4 is true as well. For Q_5 , consider $x \oplus y^*$ and $(x \oplus y)^*$. They are equal if x and y are both standard, since then * and \oplus agree with \prime and +. If x is non-standard, and y is standard, we have $x \oplus y^* = x = x^* = (x \oplus y)^*$. If x and y are both non-standard, we have four cases:

$$a \oplus a^* = b = b^* = (a \oplus a)^*$$
$$b \oplus b^* = a = a^* = (b \oplus b)^*$$
$$b \oplus a^* = b = b^* = (b \oplus y)^*$$
$$a \oplus b^* = a = a^* = (a \oplus b)^*$$

models-of-q rev: 016d2bc (2024-06-22) by OLP / CC-BY

If x is standard, but y is non-standard, we have

$$n \oplus a^* = n \oplus a = b = b^* = (n \oplus a)^*$$

 $n \oplus b^* = n \oplus b = a = a^* = (n \oplus b)^*$

So, $\mathfrak{L} \models Q_5$. However, $a \oplus 0 \neq 0 \oplus a$, so $\mathfrak{L} \nvDash \forall x \forall y (x + y) = (y + x)$.

Problem mar.2. Expand \mathfrak{L} of Example mar.2 to include \otimes and \otimes that interpret \times and <. Show that your structure satisfies the remaining axioms of \mathbf{Q} ,

$$\forall x (x \times \mathbf{0}) = \mathbf{0} \tag{Q_6}$$

$$\forall x \,\forall y \,(x \times y') = ((x \times y) + x) \tag{Q7}$$

$$\forall x \,\forall y \,(x < y \leftrightarrow \exists z \,(z' + x) = y) \tag{Q8}$$

Problem mar.3. In \mathfrak{L} of Example mar.2, $a^* = a$ and $b^* = b$. Is there a model of **Q** in which $a^* = b$ and $b^* = a$?

We've explicitly constructed models of \mathbf{Q} in which the non-standard elements live "beyond" the standard elements. In fact, that much is required by the axioms. A non-standard element x cannot be $\otimes 0$, since $\mathbf{Q} \vdash \forall x \neg x < 0$ (see ??). Also, for every n, $\mathbf{Q} \vdash \forall x (x < \overline{n}' \rightarrow (x = \overline{0} \lor x = \overline{1} \lor \cdots \lor x = \overline{n}))$ (??), so we can't have $a \otimes n$ for any n > 0.

Photo Credits

Bibliography