mar.1 Models of Q

We know that there are non-standard structures that make the same sentences true as \mathfrak{N} does, i.e., is a model of \mathbf{TA}. Since $\mathfrak{N} \models Q$, any model of \mathbf{TA} is also a model of Q. Q is much weaker than \mathbf{TA}, e.g., $Q \not\models \forall x \forall y (x + y) = (y + x)$. Weaker theories are easier to satisfy: they have more models. E.g., Q has models which make $\forall x \forall y (x + y) = (y + x)$ false, but those cannot also be models of \mathbf{TA}, or \mathbf{PA} for that matter. Models of Q are also relatively simple: we can specify them explicitly.

Example mar.1. Consider the structure \mathfrak{R} with domain $|\mathfrak{R}| = \mathbb{N} \cup \{a\}$ and interpretations

$$\sigma^\mathfrak{R} = 0$$
$$\rho^\mathfrak{R}(x) = \begin{cases} x + 1 & \text{if } x \in \mathbb{N} \\ a & \text{if } x = a \end{cases}$$
$$\star^\mathfrak{R}(x, y) = \begin{cases} x + y & \text{if } x, y \in \mathbb{N} \\ a & \text{otherwise} \end{cases}$$
$$\times^\mathfrak{R}(x, y) = \begin{cases} xy & \text{if } x, y \in \mathbb{N} \\ a & \text{otherwise} \end{cases}$$

$$<^\mathfrak{R} = \{ (x, y) : x, y \in \mathbb{N} \text{ and } x < y \} \cup \{ (x, a) : x \in |\mathfrak{R}| \}$$

To show that $\mathfrak{R} \models Q$ we have to verify that all axioms of Q are true in \mathfrak{R}. For convenience, let’s write x^* for $\rho^\mathfrak{R}(x)$ (the “successor” of x in \mathfrak{R}), $x \oplus y$ for $\star^\mathfrak{R}(x, y)$ (the “sum” of x and y in \mathfrak{R}), $x \odot y$ for $\times^\mathfrak{R}(x, y)$ (the “product” of x and y in \mathfrak{R}), and $x \bowtie y$ for $(x, y) \in <^\mathfrak{R}$. With these abbreviations, we can give the operations in \mathfrak{R} more perspicuously as

<table>
<thead>
<tr>
<th>x</th>
<th>x^*</th>
<th>$x \odot y$</th>
<th>$x \bowtie y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$n + 1$</td>
<td>n</td>
<td>m</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
</tbody>
</table>

We have $n \odot m$ iff $n < m$ for $n, m \in \mathbb{N}$ and $x \bowtie a$ for all $x \in |\mathfrak{R}|$.

$\mathfrak{R} \models \forall x \forall y (x^* = y^* \rightarrow x = y)$ since * is injective. $\mathfrak{R} \models \forall x \odot y \neq x^*$ since 0 is not a *-successor in \mathfrak{R}. $\mathfrak{R} \models \forall x (x \neq 0 \rightarrow \exists y x = y')$ since for every $n > 0$, $n = (n - 1)^*$, and $a = a^*$.

$\mathfrak{R} \models \forall x (x \odot 0) = x$ since $n \odot 0 = n + 0 = n$, and $a \odot 0 = a$ by definition of \odot. $\mathfrak{R} \models \forall x \forall y (x + y^*) = (x + y)'$ is a bit trickier. If n, m are both standard, we have:

$$(n \odot m^*) = (n + (m + 1)) = (n + m) + 1 = (n \odot m)^*$$

since \odot and * agree with $+$ and \star on standard numbers. Now suppose $x \in |\mathfrak{R}|$.

Then

$$(x \odot a^*) = (x \odot a) = a = a^* = (x \odot a)^*$$
The remaining case is if \(y \in |\mathcal{R}| \) but \(x = a \). Here we also have to distinguish cases according to whether \(y = n \) is standard or \(y = b \):

\[
(a \oplus n^*) = (a \oplus (n + 1)) = a = a^* = (x \oplus n)^*
\]

\[
(a \oplus a^*) = (a \oplus a) = a = a^* = (x \oplus a)^*
\]

This is of course a bit more detailed than needed. For instance, since \(a \oplus z = a \) whatever \(z \) is, we can immediately conclude \(a \oplus a^* = a \). The remaining axioms can be verified the same way.

\(\mathcal{R} \) is thus a model of \(Q \). Its “addition” \(\oplus \) is also commutative. But there are other sentences true in \(\mathcal{R} \) but false in \(\mathcal{R} \), and vice versa. For instance, \(a \oplus a \), so \(\mathcal{R} \models \exists x \ x < x \) and \(\mathcal{R} \not\models \forall x \neg x < x \). This shows that \(Q \not\models \forall \neg x < x \).

Problem mar.1. Prove that \(\mathcal{R} \) from Example mar.1 satisfies the remaining axioms of \(Q \):

\[
\forall x \ (x \times 0) = 0 \quad (Q_6)
\]
\[
\forall x \forall y \ (x \times y' = ((x \times y) + x) \quad (Q_7)
\]
\[
\forall x \forall y \ (x < y \iff \exists z \ (x + z' = y)) \quad (Q_8)
\]

Find a sentence only involving \(\tau \) true in \(\mathcal{R} \) but false in \(\mathcal{R} \).

Example mar.2. Consider the structure \(\mathcal{L} \) with domain \(|\mathcal{L}| = \mathbb{N} \cup \{a, b\} \) and interpretations \(\rho^L = * \), \(+ = \oplus \) given by

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(x \times y)</th>
<th>(m)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>(n + 1)</td>
<td>(n \times n)</td>
<td>(n + m)</td>
<td>(b)</td>
<td>(a)</td>
</tr>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(a + a)</td>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>(b)</td>
<td>(n + a)</td>
<td>(b + a)</td>
<td>(b)</td>
<td>(a)</td>
<td></td>
</tr>
</tbody>
</table>

Since \(* \) is injective, \(0 \) is not in its range, and every \(x \in |\mathcal{L}| \) other than \(0 \) is, axioms \(Q_1-Q_3 \) are true in \(\mathcal{L} \). For any \(x, x \oplus 0 = x \), so \(Q_4 \) is true as well. For \(Q_5 \), consider \(x \oplus y^* \) and \((x \oplus y)^* \). They are equal if \(x \) and \(y \) are both standard, since then \(* \) and \(\oplus \) agree with \(\tau \) and \(\tau \). If \(x \) is non-standard, and \(y \) is standard, we have \(x \oplus y^* = x = x^* = (x \oplus y)^* \). If \(x \) and \(y \) are both non-standard, we have four cases:

\[
\begin{align*}
a \oplus a^* &= b = b^* = (a \oplus a)^* \\
b \oplus b^* &= a = a^* = (b \oplus b)^* \\
b \oplus a^* &= b = b^* = (b \oplus y)^* \\
a \oplus b^* &= a = a^* = (a \oplus b)^*
\end{align*}
\]

If \(x \) is standard, but \(y \) is non-standard, we have

\[
\begin{align*}
n \oplus a^* &= n \oplus a = b = b^* = (n \oplus a)^* \\
n \oplus b^* &= n \oplus b = a = a^* = (n \oplus b)^*
\end{align*}
\]

So, \(\mathcal{L} \models Q_5 \). However, \(a \oplus 0 \neq 0 \oplus a \), so \(\mathcal{L} \not\models \forall x \forall y \ (x + y) = (y + x) \).
Problem mar.2. Expand \(\mathcal{L} \) of Example mar.2 to include \(\otimes \) and \(\oplus \) that interpret \(\times \) and \(< \). Show that your structure satisfies the remaining axioms of \(Q \).

\[
\begin{align*}
\forall x (x \times 0 &= 0) & (Q_6) \\
\forall x \forall y (x \times y' &= ((x \times y) + x)) & (Q_7) \\
\forall x \forall y (x < y &\iff \exists z (x + z' = y)) & (Q_8)
\end{align*}
\]

Problem mar.3. In \(\mathcal{L} \) of Example mar.2, \(a^* = a \) and \(b^* = b \). Is there a model of \(Q \) in which \(a^* = b \) and \(b^* = a \)?

We’ve explicitly constructed models of \(Q \) in which the non-standard elements live “beyond” the standard elements. In fact, that much is required by the axioms. A non-standard element \(x \) cannot be \(\ominus 0 \). Otherwise, for some \(z \), \(x \oplus z^* = 0 \) by \(Q_8 \). But then \(0 = x \oplus z^* = (x \oplus z)^* \) by \(Q_5 \), contradicting \(Q_2 \). Also, for every \(n \), \(Q \vdash \forall x (x < \pi' \rightarrow (x = \overline{0} \lor x = \overline{1} \lor \cdots \lor x = \overline{n})) \), so we can’t have \(a \ominus n \) for any \(n > 0 \).

Photo Credits

Bibliography