
Chapter udf

Models of Arithmetic

mar.1 Introduction

The standard model of aritmetic is the structure N with |N| = N in which ,
′, +, ×, and < are interpreted as you would expect. That is,  is 0, ′ is the
successor function, + is interpeted as addition and × as multiplication of the
numbers in N. Specifically,

N = 0

′N(n) = n+ 1

+N(n,m) = n+m

×N(n,m) = nm

Of course, there are structures for LA that have domains other than N. For
instance, we can take M with domain |M| = {a}∗ (the finite sequences of the
single symbol a, i.e., ∅, a, aa, aaa, . . . ), and interpretations

M = ∅
′M(s) = s _ a

+M(n,m) = an+m

×M(n,m) = anm

These two structures are “essentially the same” in the sense that the only
difference is the elements of the domains but not how the elements of the
domains are related among each other by the interpretation functions. We say
that the two structures are isomorphic.

It is an easy consequence of the compactness theorem that any theory true
in N also has models that are not isomorphic to N. Such structures are called
non-standard. The interesting thing about them is that while the elements of a
standard model (i.e., N, but also all structures isomorphic to it) are exhausted
by the values of the standard numerals n, i.e.,

|N| = {ValN(n) : n ∈ N}
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that isn’t the case in non-standard models: if M is non-standard, then there is
at least one x ∈ |M| such that x 6= ValM(n) for all n.

These non-standard elements are pretty neat: they are “infinite natural
numbers.” But their existence also explains, in a sense, the incompleteness
phenomena. Cconsider an example, e.g., the consistency statement for Peano
arithmetic, ConPA, i.e., ¬∃xPrfPA(x, p⊥q). Since PA neither proves ConPA

nor ¬ConPA, either can be consistently added to PA. Since PA is consis-
tent, N � ConPA, and consequently N 2 ¬ConPA. So N is not a model
of PA ∪ {¬ConPA}, and all its models must be nonstandard. Models of
PA ∪ {¬ConPA} must contain some element that serves as the witness that
makes ∃xPrfPA(p⊥q) true, i.e., a Gödel number of a derivation of a contradic-
tion from PA. Such an element can’t be standard—since PA ` ¬PrfPA(n, p⊥q)
for every n.

mar.2 Standard Models of Arithmetic

mod:mar:stm:
sec

The language of arithmetic LA is obviously intended to be about numbers,
specifically, about natural numbers. So, “the” standard model N is special: it
is the model we want to talk about. But in logic, we are often just interested in
structural properties, and any two structures taht are isomorphic share those.
So we can be a bit more liberal, and consider any structure that is isomorphic
to N “standard.”

Definition mar.1. A structure for LA is standard if it is isomorphic to N.

Proposition mar.2. mod:mar:stm:

prop:standard-domain

If a structure M standard, its domain is the set of values
of the standard numerals, i.e.,

|M| = {ValM(n) : n ∈ N}

Proof. Clearly, every ValM(n) ∈ |M|. We just have to show that every x ∈ |M|
is equal to ValM(n) for some n. Since M is standard, it is isomorphic to N.
Suppose g : N→ |M| is an isomorphism. Then g(n) = g(ValN(n)) = ValM(n).
But for every x ∈ |M|, there is an n ∈ N such that g(n) = x, since g is
surjective.

explanation If a structure M for LA is standard, the elements of its domain can all be
named by the standard numerals 0, 1, 2, . . . , i.e., the terms , ′, ′′, etc. Of
course, this does not mean that the elements of |M| are the numbers, just that
we can pick them out the same way we can pick out the numbers in |N|.

Problem mar.1. Show that the converse of Proposition mar.2 is false, i.e.,
give an example of a structure M with |M| = {ValM(n) : n ∈ N} that is not
isomorphic to N.

Proposition mar.3. mod:mar:stm:

prop:thq-standard

If M � Q, and |M| = {ValM(n) : n ∈ N}, then M is
standard.
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Proof. We have to show that M is isomorphic to N. Consider the function
g : N→ |M| defined by g(n) = ValM(n). By the hypothesis, g is surjective. It
is also injective: Q ` n 6= m whenever n 6= m. Thus, since M � Q, M � n 6= m,
whenever n 6= m. Thus, if n 6= m, then ValM(n) 6= ValM(m), i.e., g(n) 6= g(m).

We also have to verify that g is an isomorphism.

1. We have g(N) = g(0) since, N = 0. By definition of g, g(0) = ValM(0).
But 0 is just , and the value of a term which happens to be a constant
symbol is given by what the structure assigns to that constant symbol,
i.e., ValM() = M. So we have g(N) = M as required.

2. g(′N(n)) = g(n + 1), since ′ in N is the successor function on N. Then,
g(n + 1) = ValM(n+ 1) by definition of g. But n+ 1 is the same term
as n′, so ValM(n+ 1) = ValM(n′). By the definition of the value func-
tion, this is = ′M(ValM(n)). Since ValM(n) = g(n) we get g(′N(n)) =
′M(g(n)).

3. g(+N(n,m)) = g(n + m), since + in N is the addition function on N.
Then, g(n + m) = ValM(n+m) by definition of g. But Q ` n+m =
(n+m), so ValM(n+m) = ValM(n+m). By the definition of the value
function, this is = +M(ValM(n),ValM(m)). Since ValM(n) = g(n) and
ValM(m) = g(m), we get g(+N(n,m)) = +M(g(n), g(m)).

4. g(×N(n,m)) = ×M(g(n), g(m)): Exercise.

5. 〈n,m〉 ∈ <N iff n < m. If n < m, then Q ` n < m, and also M � n < m.
Thus 〈ValM(n),ValM(m)〉 ∈ <M, i.e., 〈g(n), g(m)〉 ∈ <M. If n 6< m,
then Q ` ¬n < m, and consequently M 2 n < m. Thus, as before,
〈g(n), g(m)〉 /∈ <M. Together, we get: 〈n,m〉 ∈ <N iff 〈g(n), g(m)〉 ∈
<M.

explanationThe function g is the most obvious way of defining a mapping from N to the
domain of any other structure M for LA, since every such M contains elements
named by 0, 1, 2, etc. So it isn’t surprising that if M makes at least some
basic statements about the n’s true in the same way that N does, and g is
also bijective, then g will turn into an isomorphism. In fact, if |M| contains no
elements other than what the n’s name, it’s the only one.

Proposition mar.4.mod:mar:stm:

prop:thq-unique-iso

If M is standard, then g from the proof of Proposi-
tion mar.3 is the only isomorphism from N to M.

Proof. Suppose h : N → |M| is an isomorphism between N and M. We show
that g = h by induction on n. If n = 0, then g(0) = M by definition of g. But
since h is an isomorphism, h(0) = h(N) = M, so g(0) = h(0).
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Now consider the case for n+ 1. We have

g(n+ 1) = ValM(n+ 1) by definition of g

= ValM(n′)

= ′M(ValM(n))

= ′M(g(n)) by definition of g

= ′M(h(n)) by induction hypothesis

= h(′N(n)) since h is an isomorphism

= h(n+ 1)

explanation For any denumerable set X, there’s a bijection between N and X, so every
such set X is potentially the domain of a standard model. In fact, once you
pick an object z ∈ X and a suitable function s : X → X as X and ′X, the
interpretation of +, ×, and < is already fixed. Only functions s = ′X that are
both injective and surjective are suitable in a standard model. It has to be
injective since the successor function in N is, and that ′ is injective is expressed
by a sentence true in N which X thus also has to make true. It has to be
surjective because otherwise there would be some x ∈ X not in the domain
of s, i.e., the sentence ∀x∃y y′ = x would be false—but it is true in N.

mar.3 Non-Standard Models

explanation We call a structure for LA standard if it is isomorphic to N. If a structure
isn’t isomorphic to N, it is called non-standard.

Definition mar.5. A structure M for LA is non-standard if it is not isomor-
phic to N. The elements x ∈ |M| which are equal to ValM(n) for some n ∈ N
are called standard numbers (of M), and those not, non-standard numbers.

explanation By Proposition mar.2, any standard structure for LA contains only stan-
dard elements. Consequently, a non-standard structure must contain at least
one non-standard element. In fact, the existence of a non-standard element
guarantees that the structure is non-standard.

Proposition mar.6. If a structure M for LA contains a non-standard number,
M is non-standard.

Proof. Suppose not, i.e., suppose M standard but contains a non-standard
number x. Let g : N→ |M| be an isomorphism. It is easy to see (by induction
on n) that g(ValN(n)) = ValM(n). In other words, g maps standard numbers
of N to standard numbers of M. If M contains a non-standard number, g
cannot be surjective, contrary to hypothesis.
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Problem mar.2. Recall that Q contains the axioms

∀x∀y (x′ = y′→ x = y) (Q1)

∀x  6= x′ (Q2)

∀x (x 6= →∃y x = y′) (Q3)

Give structures M1, M2, M3 such that

1. M1 � Q1, M1 � Q2, M1 2 Q3;

2. M2 � Q1, M2 2 Q2, M2 � Q3; and

3. M3 2 Q1, M3 � Q2, M3 � Q3;

Obviously, you just have to specify Mi and ′Mi for each.

explanationIt is easy enough to specify non-standard structures for LA. For instance,
take the structure with domain Z and interpret all non-logical symbols as usual.
Since negative numbers are not values of n for any n, this structure is non-
standard. Of course, it will not be a model of arithmetic in the sense that it
makes the same sentences true as N. For instance, ∀xx′ 6=  is false. However,
we can prove that non-standard models of arithmetic exist easily enough, using
the compactness theorem.

Proposition mar.7. Let TA = {ϕ : N � ϕ} be the theory of N. TA has
an enumerable non-standard model.

Proof. Expand LA by a new constant symbol c and consider the set of sentences

Γ = TA ∪ {c 6= 0, c 6= 1, c 6= 2, . . . }

Any model Mc of Γ would contain an element x = cM which is non-standard,
since x 6= ValM(n) for all n ∈ N. Also, obviously, Mc � TA, since TA ⊆ Γ . If
we turn Mc into a structure M for LA simply by forgetting about c, its domain
still contains the non-standard x, and also M � TA. The latter is guaranteed
since c does not occur in TA. So, it suffices to show that Γ has a model.

We use the compactness theorem to show that Γ has a model. If every
finite subset of Γ is satisfiable, so is Γ . Consider any finite subset Γ0 ⊆ Γ . Γ0

includes some sentences of TA and some of the form c 6= n, but only finitely
many. Suppose k is the largest number so that c 6= k ∈ Γ0. Define Nk by
expanding N to include the interpretation cNk = k + 1. Nk � Γ0: if ϕ ∈ TA,
Nk � ϕ since Nk is just like N in all respects except c, and c does not occur
in ϕ. And Nk � c 6= n, since n ≤ k, and ValNk(c) = k + 1. Thus, every finite
subset of Γ is satisfiable.
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mar.4 Models of Q

explanation We know that there are non-standard structures that make the same sen-
tences true as N does, i.e., is a model of TA. Since N � Q, any model of TA is
also a model of Q. Q is much weaker than TA, e.g., Q 0 ∀x ∀y (x+y) = (y+x).
Weaker theories are easier to satisfy: they have more models. E.g., Q has mod-
els which make ∀x ∀y (x+ y) = (y + x) false, but those cannot also be models
of TA, or PA for that matter. Models of Q are also relatively simple: we can
specify them explicitly.

Example mar.8. mod:mar:mdq:

ex:model-K-of-Q

Consider the structure K with domain |K| = N ∪ {a} and
interpretations

K = 0

′K(x) =

{
x+ 1 if x ∈ N
a if x = a

+K(x, y) =

{
x+ y if x, y ∈ N
a otherwise

×K(x, y) =

{
xy if x, y ∈ N
a otherwise

<K = {〈x, y〉 : x, y ∈ N and x < y} ∪ {〈x, a〉 : x ∈ |K|}

To show that K � Q we have to verify that all axioms of Q are true in K.
For convenience, let’s write x∗ for ′K(x) (the “successor” of x in K), x ⊕ y for
+K(x, y) (the “sum” of x and y in K, x ⊗ y for ×K(x, y) (the “product” of x
and y in K), and x4 y for 〈x, y〉 ∈ <K. With these abbreviations, we can give
the operations in K more perspicuously as

x x∗

n n+ 1
a a

x⊕ y m a
n n+m a
a a a

x⊗ y m a
n nm a
a a a

We have n4m iff n < m for n, m ∈ N and x4 a for all x ∈ |K|.
K � ∀x∀y (x′ = y′ → x = y) since ∗ is injective. K � ∀x  6= x′ since 0 is

not a ∗-successor in K. N � ∀x (x 6= → ∃y x = y′) since for every n > 0,
n = (n− 1)∗, and a = a∗.

K � ∀x (x + ) = x since n ⊕ 0 = n + 0 = n, and a ⊕ 0 = a by definition
of ⊕. K � ∀x∀y (x+ y′) = (x+ y)′ is a bit trickier. If n, m are both standard,
we have:

(n⊕m∗) = (n+ (m+ 1)) = (n+m) + 1 = (n⊕m)∗

since ⊕ and ∗ agree with + and ′ on standard numbers. Now suppose x ∈ |K|.
Then

(x⊕ a∗) = (x⊕ a) = a = a∗ = (x⊕ a)∗
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The remaining case is if y ∈ |K| but x = a. Here we also have to distinguish
cases according to whether y = n is standard or y = b:

(a⊕ n∗) = (a⊕ (n+ 1)) = a = a∗ = (x⊕ n)∗

(a⊕ a∗) = (a⊕ a) = a = a∗ = (x⊕ a)∗

This is of course a bit more detailed than needed. For instance, since a⊕ z = a
whatever z is, we can immediately conclude a⊕a∗ = a. The remaining axioms
can be verified the same way.

K is thus a model of Q. Its “addition” ⊕ is also commutative. But there
are other sentences true in N but false in K, and vice versa. For instance, a4a,
so K � ∃xx < x and K 2 ∀x¬x < x. This shows that Q 0 ∀x¬x < x.

Problem mar.3. Prove that K from Example mar.8 satisifies the remaining
axioms of Q,

∀x (x× ) =  (Q6)

∀x∀y (x× y′) = ((x× y) + x) (Q7)

∀x∀y (x < y↔∃z (x+ z′ = y)) (Q8)

Find a sentence only involving ′ true in N but false in K.

Example mar.9.mod:mar:mdq:

ex:model-L-of-Q

Consider the structure L with domain |L| = N∪{a, b} and

interpretations ′L = ∗, +L = ⊕ given by

x x∗

n n+ 1
a a
b b

x⊕ y m a b
n n+m b a
a a b a
b b b a

Since ∗ is injective, 0 is not in its range, and every x ∈ |L| other than 0 is,
axioms Q1–Q3 are true in L. For any x, x⊕ 0 = x, so Q4 is true as well. For
Q5, consider x⊕ y∗ and (x⊕ y)∗. They are equal if x and y are both standard,
since then ∗ and ⊕ agree with ′ and +. If x is non-standard, and y is standard,
we have x ⊕ y∗ = x = x∗ = (x ⊕ y)∗. If x and y are both non-standard, we
have four cases:

a⊕ a∗ = b = b∗ = (a⊕ a)∗

b⊕ b∗ = a = a∗ = (b⊕ b)∗

b⊕ a∗ = b = b∗ = (b⊕ y)∗

a⊕ b∗ = a = a∗ = (a⊕ b)∗

If x is standard, but y is non-standard, we have

n⊕ a∗ = n⊕ a = b = b∗ = (n⊕ a)∗

n⊕ b∗ = n⊕ b = a = a∗ = (n⊕ b)∗

So, L � Q5. However, a⊕ 0 6= 0⊕ a, so L 2 ∀x ∀y (x+ y) = (y + x).
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Problem mar.4. Expand L of Example mar.9 to include ⊗ and 4 that in-
terpret × and <. Show that your structure satisifies the remaining axioms
of Q,

∀x (x× ) =  (Q6)

∀x∀y (x× y′) = ((x× y) + x) (Q7)

∀x∀y (x < y↔∃z (x+ z′ = y)) (Q8)

Problem mar.5. In L of Example mar.9, a∗ = a and b∗ = b. Is there a model
of Q in which a∗ = b and b∗ = a?

explanation We’ve explicitly constructed models of Q in which the non-standard ele-
ments live “beyond” the standard elements. In fact, that much is required by
the axioms. A non-standard element x cannot be 40. Otherwise, for some z,
x ⊕ z∗ = 0 by Q8. But then 0 = x ⊕ z∗ = (x ⊕ z)∗ by Q5, contradicting Q2.
Also, for every n, Q ` ∀x (x < n′→ (x = 0 ∨ x = 1 ∨ · · · ∨ x = n)), so we can’t
have a4 n for any n > 0.

mar.5 Computable Models of Arithmetic

explanation The standard model N has two nice features. Its domain is the natural
numbers N, i.e., its elements are just the kinds of things we want to talk about
using the language of arithmetic, and the standard numeral n actually picks
out n. The other nice feature is that the interpretations of the non-logical
symbols of LA are all computable. The successor, addition, and multiplication
functions which serve as ′N, +N, and ×N are computable functions of numbers.
(Computable by Turing machines, or definable by primitive recursion, say.)
And the less-than relation on N, i.e., <N, is decidable.

Non-standard models of arithmetical theories such as Q and PA must con-
tain non-standard elements. Thus their domains typically include elements in
addition to N. However, any countable structure can be built on any denumer-
able set, including N. So there are also non-standard models with domain N.
In such models M, of course, at least some numbers cannot play the roles they
usually play, since some k must be different from ValM(n) for all n ∈ N.

Definition mar.10. A structure M for LA is computable iff |M| = N and ′M,
+M, ×M are computable functions and <M is a decidable relation.

Example mar.11. Recall the structure K from Example mar.8 Its domain
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was |K| = N ∪ {a} and interpretations

K = 0

′K(x) =

{
x+ 1 if x ∈ N
a if x = a

+K(x, y) =

{
x+ y if x, y ∈ N
a otherwise

×K(x, y) =

{
xy if x, y ∈ N
a otherwise

<K = {〈x, y〉 : x, y ∈ N and x < y} ∪ {〈x, a〉 : n ∈ |K|}

But |K| is denumerable and so is equinumerous with N. For instance, g : N →
|K| with g(0) = a and g(n) = n+ 1 for n > 0 is a bijection. We can turn it into
an isomorphism between a new model K′ of Q and K. In K′, we have to assign
different functions and relations to the symbols of LA, since different elements
of N play the roles of standard and non-standard numbers.

Specifically, 0 now plays the role of a, not of the smallest standard number.
The smallest standard number is now 1. So we assign K

′
= 1. The successor

function is also different now: given a standard number, i.e., an n > 0, it still
returns n + 1. But 0 now plays the role of a, which is its own successor. So
′K′

(0) = 0. For addition and multiplication we likewise have

+K′
(x, y) =

{
x+ y if x, y > 0

0 otherwise

×K′
(x, y) =

{
xy if x, y > 0

0 otherwise

And we have 〈x, y〉 ∈ <K′
iff x < y and x > 0 and y > 0, or if y = 0.

All of these functions are computable functions of natural numbers and <K′

is a decidable relation on N—but they are not the same functions as successor,
addition, and multiplication on N, and <K′

is not the same relation as < on N.

Problem mar.6. Give a structure L′ with |L′| = N isomorphic to L of Exam-
ple mar.9.

explanationThis example shows that Q has computable non-standard models with do-
main N. However, the following result shows that this is not true for models
of PA (and thus also for models of TA).

Theorem mar.12 (Tennenbaum’s Theorem). N is the only computable model
of PA.
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