mar.1 Introduction

The standard model of arithmetic is the structure \mathcal{N} with $|\mathcal{N}| = \mathbb{N}$ in which 0, \prime, $+$, \times, and $<$ are interpreted as you would expect. That is, 0 is 0, \prime is the successor function, $+$ is interpreted as addition and \times as multiplication of the numbers in \mathbb{N}. Specifically,

\[
\begin{align*}
o_{\mathcal{N}} &= 0 \\
\prime_{\mathcal{N}}(n) &= n + 1 \\
+_{\mathcal{N}}(n, m) &= n + m \\
\times_{\mathcal{N}}(n, m) &= nm
\end{align*}
\]

Of course, there are structures for \mathcal{L}_A that have domains other than \mathbb{N}. For instance, we can take \mathfrak{M} with domain $|\mathfrak{M}| = \{a\}^*$ (the finite sequences of the single symbol a, i.e., \emptyset, a, aa, aaa, \ldots), and interpretations

\[
\begin{align*}
o_{\mathfrak{M}} &= \emptyset \\
\prime_{\mathfrak{M}}(s) &= s \mapsto a \\
+_{\mathfrak{M}}(n, m) &= a^{n+m} \\
\times_{\mathfrak{M}}(n, m) &= a^{nm}
\end{align*}
\]

These two structures are “essentially the same” in the sense that the only difference is the elements of the domains but not how the elements of the domains are related among each other by the interpretation functions. We say that the two structures are isomorphic.

It is an easy consequence of the compactness theorem that any theory true in \mathcal{N} also has models that are not isomorphic to \mathcal{N}. Such structures are called non-standard. The interesting thing about them is that while the elements of a standard model (i.e., \mathcal{N}, but also all structures isomorphic to it) are exhausted by the values of the standard numerals π, i.e.,

\[|\mathcal{N}| = \{\text{Val}_{\mathcal{N}}(\pi) : n \in \mathbb{N}\}\]

that isn’t the case in non-standard models: if \mathfrak{M} is non-standard, then there is at least one $x \in |\mathfrak{M}|$ such that $x \neq \text{Val}_{\mathfrak{M}}(\pi)$ for all n.

These non-standard elements are pretty neat: they are “infinite natural numbers.” But their existence also explains, in a sense, the incompleteness phenomena. Consider an example, e.g., the consistency statement for Peano arithmetic, Con_{PA}, i.e., $\neg \exists x \text{Prf}_{\text{PA}}(x, \ulcorner \bot \urcorner)$. Since PA neither proves Con_{PA} nor $\neg \text{Con}_{\text{PA}}$, either can be consistently added to PA. Since PA is consistent, $\mathcal{N} \models \text{Con}_{\text{PA}}$, and consequently $\mathfrak{M} \not\equiv \neg \text{Con}_{\text{PA}}$. So \mathfrak{M} is not a model of $\text{PA} \cup \{\neg \text{Con}_{\text{PA}}\}$, and all its models must be nonstandard. Models of $\text{PA} \cup \{\neg \text{Con}_{\text{PA}}\}$ must contain some element that serves as the witness that makes $\exists x \text{Prf}_{\text{PA}}(\ulcorner \bot \urcorner)$ true, i.e., a Gödel number of a derivation of a contradiction from PA. Such an element can’t be standard—since $\text{PA} \vdash \neg \text{Prf}_{\text{PA}}(\pi, \ulcorner \bot \urcorner)$ for every n.

1