mar.1 Computable Models of Arithmetic

The standard model \mathfrak{N} has two nice features. Its domain is the natural numbers \mathbb{N}, i.e., its elements are just the kinds of things we want to talk about using the language of arithmetic, and the standard numeral n actually picks out n. The other nice feature is that the interpretations of the non-logical symbols of L_A are all *computable*. The successor, addition, and multiplication functions which serve as $\cdot^{\mathfrak{N}}$, $+^{\mathfrak{N}}$, and $\times^{\mathfrak{N}}$ are computable functions of numbers. (Computable by Turing machines, or definable by primitive recursion, say.) And the less-than relation on \mathfrak{N}, i.e., $<^{\mathfrak{N}}$, is decidable.

Non-standard models of arithmetical theories such as \mathbb{Q} and \mathbf{PA} must contain non-standard elements. Thus their domains typically include elements in addition to \mathbb{N}. However, any countable structure can be built on any denumerable set, including \mathbb{N}. So there are also non-standard models with domain \mathbb{N}. In such models \mathfrak{M}, of course, at least some numbers cannot play the roles they usually play, since some k must be different from $\text{Val}^{\mathfrak{M}}(n)$ for all $n \in \mathbb{N}$.

Definition mar.1. A structure \mathfrak{M} for L_A is *computable* iff $|\mathfrak{M}| = \mathbb{N}$ and $\cdot^{\mathfrak{M}}$, $+^{\mathfrak{M}}$, $\times^{\mathfrak{M}}$ are computable functions and $<^{\mathfrak{M}}$ is a decidable relation.

Example mar.2. Recall the structure \mathfrak{K} from ???. Its domain was $|\mathfrak{K}| = \mathbb{N} \cup \{a\}$ and interpretations

$$
\begin{align*}
\sigma^{\mathfrak{K}} &= 0 \\
\cdot^{\mathfrak{K}}(x) &= \begin{cases}
 x + 1 & \text{if } x \in \mathbb{N} \\
 a & \text{if } x = a
\end{cases} \\
+^{\mathfrak{K}}(x, y) &= \begin{cases}
 x + y & \text{if } x, y \in \mathbb{N} \\
 a & \text{otherwise}
\end{cases} \\
\times^{\mathfrak{K}}(x, y) &= \begin{cases}
 xy & \text{if } x, y \in \mathbb{N} \\
 0 & \text{if } x = 0 \text{ or } y = 0 \\
 a & \text{otherwise}
\end{cases} \\
<^{\mathfrak{K}} &= \{ (x, y) : x, y \in \mathbb{N} \text{ and } x < y \} \cup \{ (x, a) : n \in |\mathfrak{K}| \}
\end{align*}
$$

But $|\mathfrak{K}|$ is *denumerable* and so is equinumerous with \mathbb{N}. For instance, $g : \mathbb{N} \to |\mathfrak{K}|$ with $g(0) = a$ and $g(n) = n + 1$ for $n > 0$ is a bijection. We can turn it into an isomorphism between a new model \mathfrak{R}' of \mathbb{Q} and \mathfrak{K}. In \mathfrak{R}', we have to assign different functions and relations to the symbols of L_A, since different elements of \mathbb{N} play the roles of standard and non-standard numbers.

Specifically, 0 now plays the role of a, not of the smallest standard number. The smallest standard number is now 1. So we assign $\sigma^{\mathfrak{R}'} = 1$. The successor function is also different now: given a standard number, i.e., an $n > 0$, it still returns $n + 1$. But 0 now plays the role of a, which is its own successor. So
\(\sigma'(0) = 0 \). For addition and multiplication we likewise have

\[
\begin{align*}
+_{\mathcal{K}'}(x, y) &= \begin{cases}
 x + y - 1 & \text{if } x, y > 0 \\
 0 & \text{otherwise}
\end{cases} \\
\times_{\mathcal{K}'}(x, y) &= \begin{cases}
 1 & \text{if } x = 1 \text{ or } y = 1 \\
 xy - x - y + 2 & \text{if } x, y > 1 \\
 0 & \text{otherwise}
\end{cases}
\end{align*}
\]

And we have \(\langle x, y \rangle \in <_{\mathcal{K}'} \) iff \(x < y \) and \(x > 0 \) and \(y > 0 \), or if \(y = 0 \).

All of these functions are computable functions of natural numbers and \(<_{\mathcal{K}'} \) is a decidable relation on \(\mathbb{N} \) — but they are not the same functions as successor, addition, and multiplication on \(\mathbb{N} \), and \(<_{\mathcal{K}'} \) is not the same relation as \(< \) on \(\mathbb{N} \).

Problem mar.1. Give a structure \(\mathcal{L}' \) with \(|\mathcal{L}'| = \mathbb{N} \) isomorphic to \(\mathcal{L} \) of ??.

Example mar.2 shows that \(\mathbb{Q} \) has computable non-standard models with domain \(\mathbb{N} \). However, the following result shows that this is not true for models of \(\text{PA} \) (and thus also for models of \(\text{TA} \)).

Theorem mar.3 (Tennenbaum’s Theorem). \(\mathbb{N} \) is the only computable model of \(\text{PA} \).

Photo Credits

Bibliography