mar.1 Computable Models of Arithmetic

The standard model \mathcal{M} has two nice features. Its domain is the natural numbers \mathbb{N}, i.e., its elements are just the kinds of things we want to talk about using the language of arithmetic, and the standard numeral n actually picks out n. The other nice feature is that the interpretations of the non-logical symbols of \mathcal{L}_A are all computable. The successor, addition, and multiplication functions which serve as $\nu^\mathcal{M}$, $+^\mathcal{M}$, and $\times^\mathcal{M}$ are computable functions of numbers. (Computable by Turing machines, or definable by primitive recursion, say.) And the less-than relation on \mathcal{M}, i.e., $<^\mathcal{M}$, is decidable.

Non-standard models of arithmetical theories such as Q and PA must contain non-standard elements. Thus their domains typically include elements in addition to \mathbb{N}. However, any countable structure can be built on any denumerable set, including \mathbb{N}. So there are also non-standard models with domain \mathbb{N}. In such models \mathcal{M}, of course, at least some numbers cannot play the roles they usually play, since some k must be different from $Val^\mathcal{M}(n)$ for all $n \in \mathbb{N}$.

Definition mar.1. A structure \mathcal{M} for \mathcal{L}_A is computable iff $|\mathcal{M}| = \mathbb{N}$ and $\nu^\mathcal{M}$, $+^\mathcal{M}$, $\times^\mathcal{M}$ are computable functions and $<^\mathcal{M}$ is a decidable relation.

Example mar.2. Recall the structure \mathcal{R} from ?? Its domain was $|\mathcal{R}| = \mathbb{N} \cup \{a\}$ and interpretations

$$o^\mathcal{R} = 0$$
$$\nu^\mathcal{R}(x) = \begin{cases} x + 1 & \text{if } x \in \mathbb{N} \\ a & \text{if } x = a \end{cases}$$
$$+^\mathcal{R}(x, y) = \begin{cases} x + y & \text{if } x, y \in \mathbb{N} \\ a & \text{otherwise} \end{cases}$$
$$\times^\mathcal{R}(x, y) = \begin{cases} xy & \text{if } x, y \in \mathbb{N} \\ a & \text{otherwise} \end{cases}$$
$$<^\mathcal{R} = \{(x, y) : x, y \in \mathbb{N} \text{ and } x < y\} \cup \{(x, a) : n \in |\mathcal{R}|\}$$

But $|\mathcal{R}|$ is denumerable and so is equinumerous with \mathbb{N}. For instance, $g: \mathbb{N} \to |\mathcal{R}|$ with $g(0) = a$ and $g(n) = n + 1$ for $n > 0$ is a bijection. We can turn it into an isomorphism between a new model \mathcal{R}' of Q and \mathcal{R}. In \mathcal{R}', we have to assign different functions and relations to the symbols of \mathcal{L}_A, since different elements of \mathbb{N} play the roles of standard and non-standard numbers.

Specifically, 0 now plays the role of a, not of the smallest standard number. The smallest standard number is now 1. So we assign $o^{\mathcal{R}'} = 1$. The successor function is also different now: given a standard number, i.e., an $n > 0$, it still returns $n + 1$. But 0 now plays the role of a, which is its own successor. So
\(\rho'(0) = 0 \). For addition and multiplication we likewise have

\[
+^{\mathcal{K}'}(x, y) = \begin{cases}
 x + y & \text{if } x, y > 0 \\
 0 & \text{otherwise}
\end{cases}
\]

\[
\times^{\mathcal{K}'}(x, y) = \begin{cases}
 xy & \text{if } x, y > 0 \\
 0 & \text{otherwise}
\end{cases}
\]

And we have \(\langle x, y \rangle \in <^{\mathcal{K}'} \) iff \(x < y \) and \(x > 0 \) and \(y > 0 \), or if \(y = 0 \).

All of these functions are computable functions of natural numbers and \(<^{\mathcal{K}'} \) is a decidable relation on \(\mathbb{N} \)—but they are not the same functions as successor, addition, and multiplication on \(\mathbb{N} \), and \(<^{\mathcal{K}'} \) is not the same relation as \(< \) on \(\mathbb{N} \).

Problem mar.1. Give a structure \(\mathcal{L}' \) with \(|\mathcal{L}'| = \mathbb{N} \) isomorphic to \(\mathcal{L} \) of ??.

This example shows that \(\mathbb{Q} \) has computable non-standard models with domain \(\mathbb{N} \). However, the following result shows that this is not true for models of \(\text{PA} \) (and thus also for models of \(\text{TA} \)).

Theorem mar.3 (Tennenbaum’s Theorem). \(\mathcal{N} \) is the only computable model of \(\text{PA} \).

Photo Credits

Bibliography