Chapter udf

Lindström’s Theorem

lin.1 Introduction

In this chapter we aim to prove Lindström’s characterization of first-order logic as the maximal logic for which (given certain further constraints) the Compactness and the Downward Löwenheim-Skolem theorems hold (?? and ??). First, we need a more general characterization of the general class of logics to which the theorem applies. We will restrict ourselves to relational languages, i.e., languages which only contain predicate symbols and individual constants, but no function symbols.

lin.2 Abstract Logics

Definition lin.1. An abstract logic is a pair \(\langle L, \models_L \rangle \), where \(L \) is a function that assigns to each language \(L \) a set \(L(L) \) of sentences, and \(\models_L \) is a relation between structures for the language \(L \) and elements of \(L(L) \). In particular, \(\langle F, \models \rangle \) is ordinary first-order logic, i.e., \(F \) is the function assigning to the language \(L \) the set of first-order sentences built from the constants in \(L \), and \(\models \) is the satisfaction relation of first-order logic.

Notice that we are still employing the same notion of structure for a given language as for first-order logic, but we do not presuppose that sentences are build up from the basic symbols in \(L \) in the usual way, nor that the relation \(\models_L \) is recursively defined in the same way as for first-order logic. So for instance the definition, being completely general, is intended to capture the case where sentences in \(\langle L, \models_L \rangle \) contain infinitely long conjunctions or disjunction, or quantifiers other than \(\exists \) and \(\forall \) (e.g., “there are infinitely many \(x \) such that . . .”), or perhaps infinitely long quantifier prefixes. To emphasize that “sentences” in \(L(L) \) need not be ordinary sentences of first-order logic, in this chapter we use variables \(\alpha, \beta, \ldots \) to range over them, and reserve \(\varphi, \psi, \ldots \) for ordinary first-order formulas.
Definition lin.2. Let Mod\(_L(\alpha)\) denote the class \{\(\mathfrak{M} : \mathfrak{M} \models_L \alpha\}\). If the language needs to be made explicit, we write Mod\(_L^\mathfrak{M}(\alpha)\). Two structures \(\mathfrak{M}\) and \(\mathfrak{N}\) for \(\mathcal{L}\) are elementarily equivalent in \(\langle \mathcal{L}, \models_L \rangle\), written \(\mathfrak{M} \equiv_L \mathfrak{N}\), if the same sentences from \(L(\mathcal{L})\) are true in each.

Definition lin.3. An abstract logic \(\langle \mathcal{L}, \models_L \rangle\) for the language \(\mathcal{L}\) is normal if it satisfies the following properties:

1. \textbf{\((L\text{-Monotonicity)}\)} For languages \(\mathcal{L}\) and \(\mathcal{L}'\), if \(\mathcal{L} \subseteq \mathcal{L}'\), then \(L(\mathcal{L}) \subseteq L(\mathcal{L}')\).

2. \textbf{\((Expansion\ Property)\)} For each \(\alpha \in L(\mathcal{L})\) there is a finite subset \(\mathcal{L}'\) of \(\mathcal{L}\) such that the relation \(\mathfrak{M} \models_L \alpha\) depends only on the reduct of \(\mathfrak{M}\) to \(\mathcal{L}'\); i.e., if \(\mathfrak{M}\) and \(\mathfrak{N}\) have the same reduct to \(\mathcal{L}'\) then \(\mathfrak{M} \models_L \alpha\) if and only if \(\mathfrak{N} \models_L \alpha\).

3. \textbf{\((Isomorphism\ Property)\)} If \(\mathfrak{M} \models_L \alpha\) and \(\mathfrak{M} \simeq \mathfrak{N}\) then also \(\mathfrak{N} \models_L \alpha\).

4. \textbf{\((Renaming\ Property)\)} The relation \(\models_L\) is preserved under renaming: if the language \(\mathcal{L}'\) is obtained from \(\mathcal{L}\) by replacing each symbol \(P\) by a symbol \(P'\) of the same arity and each constant \(c\) by a distinct constant \(c'\), then for each structure \(\mathfrak{M}\) and sentence \(\alpha\), \(\mathfrak{M} \models_L \alpha\) if and only if \(\mathfrak{M}' \models_L \alpha'\), where \(\mathfrak{M}'\) is the \(\mathcal{L}'\)-structure corresponding to \(\mathcal{L}\) and \(\alpha'\) is the \(\mathcal{L}'\)-structure corresponding to \(\alpha\).

5. \textbf{\((Boolean\ Property)\)} The abstract logic \(\langle L, \models_L \rangle\) is closed under the Boolean connectives in the sense that for each \(\alpha \in L(\mathcal{L})\) there is a \(\beta \in L(\mathcal{L})\) such that \(\mathfrak{M} \models_L \beta\) if and only if \(\mathfrak{M} \not\models_L \alpha\), and for each \(\alpha\) and \(\beta\) there is a \(\gamma\) such that \(\text{Mod}_L(\gamma) = \text{Mod}_L(\alpha) \cap \text{Mod}_L(\beta)\). Similarly for atomic formulas and the other connectives.

6. \textbf{\((Quantifier\ Property)\)} For each constant \(c\) in \(\mathcal{L}\) and \(\alpha \in L(\mathcal{L})\) there is a \(\beta \in L(\mathcal{L})\) such that

\[
\text{Mod}_{L}(\beta) = \{\mathfrak{M} : (\mathfrak{M}, a) \in \text{Mod}_{L}(\alpha)\ \text{for some}\ a \in |\mathfrak{M}|\},
\]

where \(\mathcal{L}' = \mathcal{L} \setminus \{c\}\) and \((\mathfrak{M}, a)\) is the expansion of \(\mathfrak{M}\) to \(\mathcal{L}\) assigning \(a\) to \(c\).

7. \textbf{\((Relativization\ Property)\)} Given a sentence \(\alpha \in L(\mathcal{L})\) and symbols \(R, c_1, \ldots, c_n\) not in \(\mathcal{L}\), there is a sentence \(\beta \in L(\mathcal{L} \cup \{R, c_1, \ldots, c_n\})\) called the relativization of \(\alpha\) to \(R(x, c_1, \ldots, c_n)\), such that for each structure \(\mathfrak{M}\):

\[
(\mathfrak{M}, X, b_1, \ldots, b_n) \models_L \beta\]

if and only if \(\mathfrak{M} \models_L \alpha\),

where \(\mathfrak{M}\) is the substructure of \(\mathfrak{M}\) with domain \(|\mathfrak{M}| = \{a \in |\mathfrak{M}| : R^\mathfrak{M}(a, b_1, \ldots, b_n)\}\) (see ??), and \((\mathfrak{M}, X, b_1, \ldots, b_n)\) is the expansion of \(\mathfrak{M}\) interpreting \(R, c_1, \ldots, c_n\) by \(X, b_1, \ldots, b_n\), respectively (with \(X \subseteq M^{n+1}\)).
Definition lin.4. Given two abstract logics \(\langle L_1, \models_{L_1} \rangle \) and \(\langle L_2, \models_{L_2} \rangle \) we say that the latter is at least as expressive as the former, written \(\langle L_1, \models_{L_1} \rangle \leq \langle L_2, \models_{L_2} \rangle \), if for each language \(L \) and sentence \(\alpha \in L_1(L) \) there is a sentence \(\beta \in L_2(L) \) such that \(\text{Mod}^L_{\models_{L_1}}(\alpha) = \text{Mod}^L_{\models_{L_2}}(\beta) \). The logics \(\langle L_1, \models_{L_1} \rangle \) and \(\langle L_2, \models_{L_2} \rangle \) are equivalent if \(\langle L_1, \models_{L_1} \rangle \leq \langle L_2, \models_{L_2} \rangle \) and \(\langle L_2, \models_{L_2} \rangle \leq \langle L_1, \models_{L_1} \rangle \).

Remark 1. First-order logic, i.e., the abstract logic \(\langle F, \models \rangle \), is normal. In fact, the above properties are mostly straightforward for first-order logic. We just remark that the expansion property comes down to extensionality, and that the relativization of a sentence \(\alpha \) to \(R(x, c_1, \ldots, c_n) \) is obtained by replacing each subformula \(\forall x \beta \) by \(\forall x (R(x, c_1, \ldots, c_n) \rightarrow \beta) \). Moreover, if \(\langle L, \models_L \rangle \) is normal, then \(\langle F, \models \rangle \leq \langle L, \models_L \rangle \), as can be can shown by induction on first-order formulas. Accordingly, with no loss in generality, we can assume that every first-order sentence belongs to every normal logic.

lin.3 Compactness and Löwenheim-Skolem Properties

We now give the obvious extensions of compactness and Löwenheim-Skolem to the case of abstract logics.

Definition lin.5. An abstract logic \(\langle L, \models_L \rangle \) has the Compactness Property if each set \(\Gamma \) of \(L(L) \)-sentences is satisfiable whenever each finite \(\Gamma_0 \subseteq \Gamma \) is satisfiable.

Definition lin.6. \(\langle L, \models_L \rangle \) has the Downward Löwenheim-Skolem property if any satisfiable \(\Gamma \) has an enumerable model.

The notion of partial isomorphism from ?? is purely “algebraic” (i.e., given without reference to the sentences of the language but only to the constants provided by the language \(L \) of the structures), and hence it applies to the case of abstract logics. In case of first-order logic, we know from ?? that if two structures are partially isomorphic then they are elementarily equivalent. That proof does not carry over to abstract logics, for induction on formulas need not be available for arbitrary \(\alpha \in L(L) \), but the theorem is true nonetheless, provided the Löwenheim-Skolem property holds.

Theorem lin.7. Suppose \(\langle L, \models_L \rangle \) is a normal logic with the Löwenheim-Skolem property. Then any two structures that are partially isomorphic are elementarily equivalent in \(\langle L, \models_L \rangle \).

Proof. Suppose \(M \models_L \alpha \), but for some \(\alpha \) also \(M \models_L \alpha \) while \(N \not\models_L \alpha \). By the Isomorphism Property we can assume that \(|M| \) and \(|N| \) are disjoint, and by the Expansion Property we can assume that \(\alpha \in L(L) \) for a finite language \(L \). Let \(I \) be a set of partial isomorphisms between \(M \) and \(N \), and with no loss of generality also assume that if \(p \in I \) and \(q \subseteq p \) then also \(q \in I \).

\(\mathcal{M}^{<\omega} \) is the set of finite sequences of elements of \(\mathcal{M} \). Let \(S \) be the ternary relation over \(\mathcal{M}^{<\omega} \) representing concatenation, i.e., if \(a, b, c \in \mathcal{M}^{<\omega} \) then
S(a, b, c) holds if and only if c is the concatenation of a and b; and let T be the ternary relation such that T(a, b, c) holds for b ∈ M and a, c ∈ |M|<ω if and only if a = a₁, . . . an and c = a₁, . . . an, b. Pick new 3-place predicate symbols P and Q and form the structure M* having the universe |M| ∪ |M|<ω, having M as a substructure, and interpreting P and Q by the concatenation relations S and T (so M* is in the language L ∪ {P, Q}).

Define |N|<ω, S′, T′, P′, Q′ and N* analogously. Since by hypothesis M ≃ p N, there is a relation I between |M|<ω and |N|<ω such that I(a, b) holds if and only if a and b are isomorphic and satisfy the back-and-forth condition of ??.

Now, let M be the structure whose domain is the union of the domains of M* and N*, having M* and N* as substructures, in the language with one extra binary predicate symbol R interpreted by the relation I and predicate symbols denoting the domains |M|* and |N|*.

Figure lin.1: The structure M with the internal partial isomorphism.

The crucial observation is that in the language of the structure M there is a first-order sentence θ₁ true in M saying that M |= L α and N ⊧ L α (this requires the Relativization Property), as well as a first-order sentence θ₂ true in M saying that M ≃ p N via the partial isomorphism I. By the Löwenheim-Skolem Property, θ₁ and θ₂ are jointly true in an enumerable model M₀ containing partially isomorphic substructures M₀ and N₀ such that M₀ |= L α and N₀ ⊧ L α. But enumerable partially isomorphic structures are in fact isomorphic by ??, contradicting the Isomorphism Property of normal abstract logics.

\[\square\]

lin.4 Lindström’s Theorem

Lemma lin.8. Suppose α ∈ L(Ł), with Ł finite, and assume also that there is an n ∈ N such that for any two structures M and N, if M ≡ n N and M |= L α then also N |= L α. Then α is equivalent to a first-order sentence, i.e., there is a first-order θ such that ModL(α) = ModL(θ).

Proof. Let n be such that any two n-equivalent structures M and N agree on the value assigned to α. Recall ??: there are only finitely many first-order sentences in a finite language that have quantifier rank no greater than n, up to
Theorem lin.9 (Lindström’s Theorem). Suppose \(\langle L, \models_L \rangle \) has the Compactness and the Löwenheim-Skolem Properties. Then \(\langle L, \models_L \rangle \leq \langle F, \models \rangle \) (so \(\langle L, \models_L \rangle \) is equivalent to first-order logic).

Proof. By Lemma lin.8, it suffices to show that for any \(\alpha \in L(\mathcal{L}) \), with \(\mathcal{L} \) finite, there is \(n \in \mathbb{N} \) such that for any two structures \(\mathcal{M} \) and \(\mathcal{N} \), if \(\mathcal{M} \equiv_n \mathcal{N} \) then \(\mathcal{M} \) and \(\mathcal{N} \) agree on \(\alpha \). For then \(\alpha \) is equivalent to a first-order sentence, from which \(\langle L, \models_L \rangle \leq \langle F, \models \rangle \) follows. Since we are working in a finite, purely relational language, by ?? we can replace the statement that \(\mathcal{M} \equiv_n \mathcal{N} \) by the corresponding algebraic statement that \(I_n(\emptyset, \emptyset) \).

Given \(\alpha \), suppose towards a contradiction that for each \(n \) there are structures \(\mathcal{M}_n \) and \(\mathcal{N}_n \) such that \(I_n(\emptyset, \emptyset) \), but (say) \(\mathcal{M}_n \models L \alpha \) whereas \(\mathcal{N}_n \not\models L \alpha \). By the Isomorphism Property we can assume that all the \(\mathcal{M}_n \)'s interpret the constants of the language by the same objects; furthermore, since there are only finitely many atomic sentences in the language, we may also assume that they satisfy the same atomic sentences (we can take a subsequence of the \(\mathcal{M}_n \)'s otherwise). Let \(\mathcal{M} \) be the union of all the \(\mathcal{M}_n \)'s, i.e., the unique minimal structure having each \(\mathcal{M}_n \) as a substructure. As in the proof of Theorem lin.7, let \(\mathcal{M}^* \) be the extension of \(\mathcal{M} \) with domain \(|\mathcal{M}| \cup |\mathcal{M}|^{<\omega} \), in the expanded language comprising the concatenation predicates \(P \) and \(Q \).

Similarly, define \(\mathcal{N}_n \), \(\mathcal{N} \) and \(\mathcal{M}^* \). Now let \(\mathcal{M} \) be the structure whose domain comprises the domains of \(\mathcal{M}^* \) and \(\mathcal{M}^* \) as well as the natural numbers \(\mathbb{N} \) along with their natural ordering \(\leq \), in the language with extra predicates representing the domains \(|\mathcal{M}| \), \(|\mathcal{M}|^\leq \) and \(|\mathcal{M}|^{<\omega} \) as well as predicates coding the domains of \(\mathcal{M}_n \) and \(\mathcal{N}_n \) in the sense that:

\[
|\mathcal{M}| = \{ a \in |\mathcal{M}| : R(a, n) \}; \quad |\mathcal{M}_n| = \{ a \in |\mathcal{M}| : S(a, n) \}; \\
|\mathcal{M}|^{<\omega} = \{ a \in |\mathcal{M}|^{<\omega} : R(a, n) \}; \quad |\mathcal{M}|^{<\omega}_n = \{ a \in |\mathcal{M}|^{<\omega} : S(a, n) \}.
\]

The structure \(\mathcal{M} \) also has a ternary relation \(J \) such that \(J(n, a, b) \) holds if and only if \(I_n(a, b) \).

Now there is a sentence \(\theta \) in the language \(\mathcal{L} \) augmented by \(R, S, J \), etc., saying that \(\leq \) is a discrete linear ordering with first but no last element and such that \(\mathcal{M}_n \models \alpha \), \(\mathcal{N}_n \not\models \alpha \), and for each \(n \) in the ordering, \(J(n, a, b) \) holds if and only if \(I_n(a, b) \).

Using the Compactness Property, we can find a model \(\mathcal{M}^* \) of \(\theta \) in which the ordering contains a non-standard element \(n^* \). In particular then \(\mathcal{M}^* \) will
contain substructures M_{n^*} and N_{n^*} such that $M_{n^*} \models L \alpha$ and $N_{n^*} \not\models L \alpha$. But now we can define a set I of pairs of k-tuples from $|M_{n^*}|$ and $|N_{n^*}|$ by putting $(a, b) \in I$ if and only if $J(n^* - k, a, b)$, where k is the length of a and b. Since n^* is non-standard, for each standard k we have that $n^* - k > 0$, and the set I witnesses the fact that $M_{n^*} \simeq_p N_{n^*}$. But by Theorem 1.7, M_{n^*} is L-equivalent to N_{n^*}, a contradiction. \[\Box\]

Photo Credits
Bibliography