## lin.1 Lindström's Theorem

mod:lin:prf:

lem:lindstrom

**Lemma lin.1.** Suppose  $\alpha \in L(\mathcal{L})$ , with  $\mathcal{L}$  finite, and assume also that there is an  $n \in \mathbb{N}$  such that for any two structures  $\mathfrak{M}$  and  $\mathfrak{N}$ , if  $\mathfrak{M} \equiv_n \mathfrak{N}$  and  $\mathfrak{M} \models_L \alpha$ then also  $\mathfrak{N} \models_L \alpha$ . Then  $\alpha$  is equivalent to a first-order sentence, i.e., there is a first-order  $\theta$  such that  $\operatorname{Mod}_L(\alpha) = \operatorname{Mod}_L(\theta)$ .

*Proof.* Let n be such that any two n-equivalent structures  $\mathfrak{M}$  and  $\mathfrak{N}$  agree on the value assigned to  $\alpha$ . Recall ??: there are only finitely many first-order sentences in a finite language that have quantifier rank no greater than n, up to logical equivalence. Now, for each fixed structure  $\mathfrak{M}$  let  $\theta_{\mathfrak{M}}$  be the conjunction of all first-order sentences  $\alpha$  true in  $\mathfrak{M}$  with  $qr(\alpha) \leq n$  (this conjunction is finite), so that  $\mathfrak{N} \models \theta_{\mathfrak{M}}$  if and only if  $\mathfrak{N} \equiv_n \mathfrak{M}$ . Then put  $\theta = \bigvee \{\theta_{\mathfrak{M}} : \mathfrak{M} \models_L \}$  $\alpha$ }; this disjunction is also finite (up to logical equivalence).

The conclusion  $\operatorname{Mod}_L(\alpha) = \operatorname{Mod}_L(\theta)$  follows. In fact, if  $\mathfrak{N} \models_L \theta$  then for some  $\mathfrak{M} \models_L \alpha$  we have  $\mathfrak{N} \models \theta_{\mathfrak{M}}$ , whence also  $\mathfrak{N} \models_L \alpha$  (by the hypothesis of the lemma). Conversely, if  $\mathfrak{N} \models_L \alpha$  then  $\theta_{\mathfrak{N}}$  is a disjunct in  $\theta$ , and since  $\mathfrak{N} \models \theta_{\mathfrak{N}}$ , also  $\mathfrak{N} \models_L \theta$ . 

thm: lindstrom

mod:lin:prf: **Theorem lin.2** (Lindström's Theorem). Suppose  $\langle L, \models_L \rangle$  has the Compactness and the Löwenheim-Skolem Properties. Then  $\langle L, \models_L \rangle \leq \langle F, \models \rangle$  (so  $\langle L, \models_L \rangle$ \rangle is equivalent to first-order logic).

> *Proof.* By Lemma lin.1, it suffices to show that for any  $\alpha \in L(\mathcal{L})$ , with  $\mathcal{L}$ finite, there is  $n \in \mathbb{N}$  such that for any two structures  $\mathfrak{M}$  and  $\mathfrak{N}$ : if  $\mathfrak{M} \equiv_n \mathfrak{N}$ then  $\mathfrak{M}$  and  $\mathfrak{N}$  agree on  $\alpha$ . For then  $\alpha$  is equivalent to a first-order sentence, from which  $\langle L, \models_L \rangle \leq \langle F, \models \rangle$  follows. Since we are working in a finite, purely relational language, by ?? we can replace the statement that  $\mathfrak{M} \equiv_n \mathfrak{N}$  by the corresponding algebraic statement that  $I_n(\emptyset, \emptyset)$ .

> Given  $\alpha$ , suppose towards a contradiction that for each n there are structures  $\mathfrak{M}_n$  and  $\mathfrak{N}_n$  such that  $I_n(\emptyset,\emptyset)$ , but (say)  $\mathfrak{M}_n \models_L \alpha$  whereas  $\mathfrak{N}_n \not\models_L \alpha$ . By the Isomorphism Property we can assume that all the  $\mathfrak{M}_n$ 's interpret the constants of the language by the same objects; furthermore, since there are only finitely many atomic sentences in the language, we may also assume that they satisfy the same atomic sentences (we can take a subsequence of the  $\mathfrak{M}$ 's otherwise). Let  $\mathfrak{M}$  be the union of all the  $\mathfrak{M}_n$ 's, i.e., the unique minimal structure having each  $\mathfrak{M}_n$  as a substructure. As in the proof of ??, let  $\mathfrak{M}^*$  be the extension of  $\mathfrak{M}$  with domain  $|\mathfrak{M}| \cup |\mathfrak{M}|^{<\omega}$ , in the expanded language comprising the concatenation predicates P and Q.

> Similarly, define  $\mathfrak{N}_n$ ,  $\mathfrak{N}$  and  $\mathfrak{N}^*$ . Now let  $\mathfrak{M}$  be the structure whose domain comprises the domains of  $\mathfrak{M}^*$  and  $\mathfrak{N}^*$  as well as the natural numbers  $\mathbb{N}$  along with their natural ordering <, in the language with extra predicates representing the domains  $|\mathfrak{M}|$ ,  $|\mathfrak{M}|$ ,  $|\mathfrak{M}|^{<\omega}$  and  $|\mathfrak{N}|^{<\omega}$  as well as predicates coding the

domains of  $\mathfrak{M}_n$  and  $\mathfrak{N}_n$  in the sense that:

$$|\mathfrak{M}_n| = \{a \in |\mathfrak{M}| : R(a,n)\}; \qquad |\mathfrak{N}_n| = \{a \in |\mathfrak{M}| : S(a,n)\};$$
  
$$|\mathfrak{M}|_n^{<\omega} = \{a \in |\mathfrak{M}|^{<\omega} : R(a,n)\}; \qquad |\mathfrak{N}|_n^{<\omega} = \{a \in |\mathfrak{N}|^{<\omega} : S(a,n)\}.$$

The structure  $\mathfrak{M}$  also has a ternary relation J such that  $J(n, \mathbf{a}, \mathbf{b})$  holds if and only if  $I_n(\mathbf{a}, \mathbf{b})$ .

Now there is a sentence  $\theta$  in the language  $\mathcal{L}$  augmented by R, S, J, etc., saying that  $\leq$  is a discrete linear ordering with first but no last element and such that  $\mathfrak{M}_n \models \alpha$ ,  $\mathfrak{N}_n \not\models \alpha$ , and for each n in the ordering,  $J(n, \mathbf{a}, \mathbf{b})$  holds if and only if  $I_n(\mathbf{a}, \mathbf{b})$ .

Using the Compactness Property, we can find a model  $\mathfrak{M}^*$  of  $\theta$  in which the ordering contains a non-standard element  $n^*$ . In particular then  $\mathfrak{M}^*$  will contain substructures  $\mathfrak{M}_{n^*}$  and  $\mathfrak{N}_{n^*}$  such that  $\mathfrak{M}_{n^*} \models_L \alpha$  and  $\mathfrak{N}_{n^*} \not\models_L \alpha$ . But now we can define a set  $\mathcal{I}$  of pairs of k-tuples from  $|\mathfrak{M}_{n^*}|$  and  $|\mathfrak{N}_{n^*}|$  by putting  $\langle \mathbf{a}, \mathbf{b} \rangle \in \mathcal{I}$  if and only if  $J(n^* - k, \mathbf{a}, \mathbf{b})$ , where k is the length of  $\mathbf{a}$  and  $\mathbf{b}$ . Since  $n^*$  is non-standard, for each standard k we have that  $n^* - k > 0$ , and the set  $\mathcal{I}$  witnesses the fact that  $\mathfrak{M}_{n^*} \simeq_p \mathfrak{N}_{n^*}$ . But by ??,  $\mathfrak{M}_{n^*}$  is L-equivalent to  $\mathfrak{N}_{n^*}$ , a contradiction.

## **Photo Credits**

## **Bibliography**