Lemma lin.1. Suppose \(\alpha \in L(\mathcal{L}) \), with \(\mathcal{L} \) finite, and assume also that there is an \(n \in \mathbb{N} \) such that for any two structures \(\mathfrak{M} \) and \(\mathfrak{N} \), if \(\mathfrak{M} \equiv_n \mathfrak{N} \) and \(\mathfrak{M} \models_L \alpha \) then also \(\mathfrak{N} \models_L \alpha \). Then \(\alpha \) is equivalent to a first-order sentence, i.e., there is a first-order \(\theta \) such that \(\text{Mod}_L(\alpha) = \text{Mod}_L(\theta) \).

Proof. Let \(n \) be such that any two \(n \)-equivalent structures \(\mathfrak{M} \) and \(\mathfrak{N} \) agree on the value assigned to \(\alpha \). Recall ??: there are only finitely many first-order sentences in a finite language that have quantifier rank no greater than \(n \), up to logical equivalence. Now, for each fixed structure \(\mathfrak{M} \) let \(\theta_{\mathfrak{M}} \) be the conjunction of all first-order sentences \(\alpha \) true in \(\mathfrak{M} \) with \(\text{qr}(\alpha) \leq n \) (this conjunction is finite), so that \(\mathfrak{M} \models \theta_{\mathfrak{M}} \) if and only if \(\mathfrak{M} \equiv_n \mathfrak{M} \). Then put \(\theta = \bigvee \{ \theta_{\mathfrak{M}} : \mathfrak{M} \models_L \alpha \} \); this disjunction is also finite (up to logical equivalence).

The conclusion \(\text{Mod}_L(\alpha) = \text{Mod}_L(\theta) \) follows. In fact, if \(\mathfrak{M} \models_L \theta \) then for some \(\mathfrak{M} \models_L \alpha \) we have \(\mathfrak{M} \models \theta_{\mathfrak{M}} \), whence also \(\mathfrak{N} \models_L \alpha \) (by the hypothesis of the lemma). Conversely, if \(\mathfrak{M} \models_L \alpha \) then \(\theta_{\mathfrak{M}} \) is a disjunct in \(\theta \), and since \(\mathfrak{M} \models \theta_{\mathfrak{M}} \), also \(\mathfrak{N} \models_L \theta \).

Theorem lin.2 (Lindström’s Theorem). Suppose \(\langle L, \models_L \rangle \) has the Compactness and the Löwenheim-Skolem Properties. Then \(\langle L, \models_L \rangle \leq \langle F, \models \rangle \) (so \(\langle L, \models_L \rangle \) is equivalent to first-order logic).

Proof. By **Lemma lin.1**, it suffices to show that for any \(\alpha \in L(\mathcal{L}) \), with \(\mathcal{L} \) finite, there is \(n \in \mathbb{N} \) such that for any two structures \(\mathfrak{M} \) and \(\mathfrak{N} \), if \(\mathfrak{M} \equiv_n \mathfrak{N} \) then \(\mathfrak{M} \) and \(\mathfrak{N} \) agree on \(\alpha \). For then \(\alpha \) is equivalent to a first-order sentence, from which \(\langle L, \models_L \rangle \leq \langle F, \models \rangle \) follows. Since we are working in a finite, purely relational language, by ?? we can replace the statement that \(\mathfrak{M} \equiv_n \mathfrak{N} \) by the corresponding algebraic statement that \(I_n(\emptyset, \emptyset) \).

Given \(\alpha \), suppose towards a contradiction that for each \(n \) there are structures \(\mathfrak{M}_n \) and \(\mathfrak{N}_n \) such that \(I_n(\emptyset, \emptyset) \), but (say) \(\mathfrak{M}_n \models_L \alpha \) whereas \(\mathfrak{N}_n \not\models_L \alpha \). By the Isomorphism Property we can assume that all the \(\mathfrak{M}_n \)'s interpret the constants of the language by the same objects; furthermore, since there are only finitely many atomic sentences in the language, we may also assume that they satisfy the same atomic sentences (we can take a subsequence of the \(\mathfrak{M} \)’s otherwise). Let \(\mathfrak{M} \) be the union of all the \(\mathfrak{M}_n \)'s, i.e., the unique minimal structure having each \(\mathfrak{M}_n \) as a substructure. As in the proof of ??, let \(\mathfrak{M}^+ \) be the extension of \(\mathfrak{M} \) with domain \(\mathfrak{M} \cup \mathfrak{M}^{<\omega} \), in the expanded language comprising the concatenation predicates \(P \) and \(Q \).

Similarly, define \(\mathfrak{N}_n, \mathfrak{N} \) and \(\mathfrak{N}^+ \). Now let \(\mathfrak{M} \) be the structure whose domain comprises the domains of \(\mathfrak{M}^+ \) and \(\mathfrak{N}^+ \) as well as the natural numbers \(\mathbb{N} \) along with their natural ordering \(\leq \), in the language with extra predicates representing the domains \(|\mathfrak{M}|, |\mathfrak{M}^{<\omega}| \) and \(|\mathfrak{M}|^{<\omega} \) as well as predicates coding the
The structure \mathcal{M} also has a ternary relation J such that $J(n, a, b)$ holds if and only if $I_n(a, b)$.

Now there is a sentence θ in the language L augmented by R, S, J, etc., saying that \leq is a discrete linear ordering with first but no last element and such that $\mathcal{M}_n \models \alpha$, $\mathcal{N}_n \not\models \alpha$, and for each n in the ordering, $J(n, a, b)$ holds if and only if $I_n(a, b)$.

Using the Compactness Property, we can find a model \mathcal{M}^* of θ in which the ordering contains a non-standard element n^*. In particular then \mathcal{M}^* will contain substructures \mathcal{M}_{n^*} and \mathcal{N}_{n^*} such that $\mathcal{M}_{n^*} \models_L \alpha$ and $\mathcal{N}_{n^*} \not\models_L \alpha$. But now we can define a set \mathcal{I} of pairs of k-tuples from $|\mathcal{M}_{n^*}|$ and $|\mathcal{N}_{n^*}|$ by putting $(a, b) \in \mathcal{I}$ if and only if $J(n^* - k, a, b)$, where k is the length of a and b. Since n^* is non-standard, for each standard k we have that $n^* - k > 0$, and the set \mathcal{I} witnesses the fact that $\mathcal{M}_{n^*} \simeq_p \mathcal{N}_{n^*}$. But by ??, \mathcal{M}_{n^*} is L-equivalent to \mathcal{N}_{n^*}, a contradiction.

\[\square\]

Photo Credits

Bibliography