Lemma lin.1. Suppose $\alpha \in L(\mathcal{L})$, with \mathcal{L} finite, and assume also that there is an $n \in \mathbb{N}$ such that for any two structures \mathfrak{M} and \mathfrak{N}, if $\mathfrak{M} \equiv_n \mathfrak{N}$ and $\mathfrak{M} \models L \alpha$ then also $\mathfrak{N} \models L \alpha$. Then α is equivalent to a first-order sentence, i.e., there is a first-order θ such that $\text{Mod}_L(\alpha) = \text{Mod}_L(\theta)$.

Proof. Let n be such that any two n-equivalent structures \mathfrak{M} and \mathfrak{N} agree on the value assigned to α. Recall ??: there are only finitely many first-order sentences in a finite language that have quantifier rank no greater than n, up to logical equivalence. Now, for each fixed structure \mathfrak{M} let $\theta_{\mathfrak{M}}$ be the conjunction of all first-order sentences α true in \mathfrak{M} with $qr(\alpha) \leq n$ (this conjunction is finite), so that $\mathfrak{M} \models \theta_{\mathfrak{M}}$ if and only if $\mathfrak{M} \equiv_n \mathfrak{M}$. Then put $\theta = \bigvee \{ \theta_{\mathfrak{M}} : \mathfrak{M} \models L \alpha \}$; this disjunction is also finite (up to logical equivalence).

The conclusion $\text{Mod}_L(\alpha) = \text{Mod}_L(\theta)$ follows. In fact, if $\mathfrak{M} \models L \theta$ then for some $\mathfrak{M} \models L \alpha$ we have $\mathfrak{M} \models \theta_{\mathfrak{M}}$, whence also $\mathfrak{M} \models L \alpha$ (by the hypothesis of the lemma). Conversely, if $\mathfrak{M} \models L \alpha$ then $\theta_{\mathfrak{M}}$ is a disjunct in θ, and since $\mathfrak{M} \models \theta_{\mathfrak{M}}$, also $\mathfrak{M} \models L \theta$. \qed

Theorem lin.2 (Lindström’s Theorem). Suppose $(L, \models L)$ has the Compactness and the Löwenheim-Skolem Properties. Then $(L, \models L) \leq (F, \models)$ (so $(L, \models L)$ is equivalent to first-order logic).

Proof. By Lemma lin.1, it suffices to show that for any $\alpha \in L(\mathcal{L})$, with \mathcal{L} finite, there is $n \in \mathbb{N}$ such that for any two structures \mathfrak{M} and \mathfrak{N} if $\mathfrak{M} \equiv_n \mathfrak{N}$ then \mathfrak{M} and \mathfrak{N} agree on α. For then α is equivalent to a first-order sentence, from which $(L, \models L) \leq (F, \models)$ follows. Since we are working in a finite, purely relational language, by ?? we can replace the statement that $\mathfrak{M} \equiv_n \mathfrak{N}$ by the corresponding algebraic statement that $I_n(\emptyset, \emptyset)$.

Given α, suppose towards a contradiction that for each n there are structures \mathfrak{M}_n and \mathfrak{N}_n such that $I_n(\emptyset, \emptyset)$, but (say) $\mathfrak{M}_n \models L \alpha$ whereas $\mathfrak{N}_n \not\models L \alpha$. By the Isomorphism Property we can assume that all the \mathfrak{M}_n’s interpret the constants of the language by the same objects; furthermore, since there are only finitely many atomic sentences in the language, we may also assume that they satisfy the same atomic sentences (we can take a subsequence of the \mathfrak{M}_n’s otherwise). Let \mathfrak{M} be the union of all the \mathfrak{M}_n’s, i.e., the unique minimal structure having each \mathfrak{M}_n as a substructure. As in the proof of ??, let \mathfrak{M}^* be the extension of \mathfrak{M} with domain $|\mathfrak{M}|\cup |\mathfrak{M}|^{<\omega}$, in the expanded language comprising the concatenation predicates P and Q.

Similarly, define \mathfrak{N}_n, \mathfrak{N} and \mathfrak{N}^*. Now let \mathfrak{M} be the structure whose domain comprises the domains of \mathfrak{M}^* and \mathfrak{N}^* as well as the natural numbers \mathbb{N} along with their natural ordering $<\omega$, in the language with extra predicates representing the domains $|\mathfrak{M}|$, $|\mathfrak{M}|^{<\omega}$ and $|\mathfrak{M}|^{<\omega}$ as well as predicates coding the
domains of \mathcal{M}_n and \mathcal{N}_n in the sense that:

$$|\mathcal{M}_n| = \{a \in |\mathcal{M}| : R(a, n)\}; \quad |\mathcal{N}_n| = \{a \in |\mathcal{N}| : S(a, n)\};$$

$$|\mathcal{M}|^{<\omega}_n = \{a \in |\mathcal{M}|^{<\omega} : R(a, n)\}; \quad |\mathcal{N}|^{<\omega}_n = \{a \in |\mathcal{N}|^{<\omega} : S(a, n)\}.$$

The structure \mathcal{M} also has a ternary relation J such that $J(n, a, b)$ holds if and only if $I_n(a, b)$.

Now there is a sentence θ in the language \mathcal{L} augmented by R, S, J, etc., saying that \leq is a discrete linear ordering with first but no last element and such that $\mathcal{M}_n \models \alpha$, $\mathcal{N}_n \not\models \alpha$, and for each n in the ordering, $J(n, a, b)$ holds if and only if $I_n(a, b)$.

Using the Compactness Property, we can find a model \mathcal{M}^* of θ in which the ordering contains a non-standard element n^*. In particular then \mathcal{M}^* will contain substructures \mathcal{M}_n^* and \mathcal{N}_n^* such that $\mathcal{M}_n^* \models_L \alpha$ and $\mathcal{N}_n^* \not\models_L \alpha$. But now we can define a set I of pairs of k-tuples from $|\mathcal{M}_n^*|$ and $|\mathcal{N}_n^*|$ by putting $(a, b) \in I$ if and only if $J(n^* - k, a, b)$, where k is the length of a and b. Since n^* is non-standard, for each standard k we have that $n^* - k > 0$, and the set I witnesses the fact that $\mathcal{M}_n^* \simeq_p \mathcal{N}_n^*$. But by ??, \mathcal{M}_n^* is L-equivalent to \mathcal{N}_n^*, a contradiction.

\[\square\]

Photo Credits

Bibliography