Lemma lin.1. Suppose $\alpha \in L(\mathcal{L})$, with \mathcal{L} finite, and assume also that there is an $n \in \mathbb{N}$ such that for any two structures \mathcal{M} and \mathcal{N}, if $\mathcal{M} \equiv_n \mathcal{N}$ and $\mathcal{M} \models_L \alpha$ then also $\mathcal{N} \models_L \alpha$. Then α is equivalent to a first-order sentence, i.e., there is a first-order θ such that $\text{Mod}_L(\alpha) = \text{Mod}_L(\theta)$.

Proof. Let n be such that any two n-equivalent structures \mathcal{M} and \mathcal{N} agree on the value assigned to α. Recall ??: there are only finitely many first-order sentences in a finite language that have quantifier rank no greater than n, up to logical equivalence. Now, for each fixed structure \mathcal{M} let $\theta_{\mathcal{M}}$ be the conjunction of all first-order sentences α true in \mathcal{M} with $qr(\alpha) \leq n$ (this conjunction is finite), so that $\mathcal{N} \models \theta_{\mathcal{M}}$ if and only if $\mathcal{M} \equiv_n \mathcal{N}$. Then put $\theta = \bigvee \{ \theta_{\mathcal{M}} : \mathcal{M} \models_L \alpha \}$; this disjunction is also finite (up to logical equivalence).

The conclusion $\text{Mod}_L(\alpha) = \text{Mod}_L(\theta)$ follows. In fact, if $\mathcal{N} \models_L \theta$ then for some $\mathcal{M} \models_L \alpha$ we have $\mathcal{N} \models \theta_{\mathcal{M}}$, whence also $\mathcal{N} \models_L \alpha$ (by the hypothesis of the lemma). Conversely, if $\mathcal{N} \models_L \alpha$ then $\theta_{\mathcal{M}}$ is a disjunct in θ, and since $\mathcal{N} \models \theta_{\mathcal{M}}$, also $\mathcal{N} \models_L \theta$. \hfill \square

Theorem lin.2 (Lindström’s Theorem). Suppose $\langle L, \models_L \rangle$ has the Compactness and the Löwenheim-Skolem Properties. Then $\langle L, \models_L \rangle \leq \langle F, \models \rangle$ (so $\langle L, \models_L \rangle$ is equivalent to first-order logic).

Proof. By Lemma lin.1, it suffices to show that for any $\alpha \in L(\mathcal{L})$, with \mathcal{L} finite, there is $n \in \mathbb{N}$ such that for any two structures \mathcal{M} and \mathcal{N}, if $\mathcal{M} \equiv_n \mathcal{N}$ then \mathcal{M} and \mathcal{N} agree on α. For then α is equivalent to a first-order sentence, from which $\langle L, \models_L \rangle \leq \langle F, \models \rangle$ follows. Since we are working in a finite, purely relational language, by ?? we can replace the statement that $\mathcal{M} \equiv_n \mathcal{N}$ by the corresponding algebraic statement that $I_n(\emptyset, \emptyset)$.

Given α, suppose towards a contradiction that for each n there are structures \mathcal{M}_n and \mathcal{N}_n such that $I_n(\emptyset, \emptyset)$, but (say) $\mathcal{M}_n \models_L \alpha$ whereas $\mathcal{N}_n \not\models_L \alpha$. By the Isomorphism Property we can assume that all the \mathcal{M}_n’s interpret the constants of the language by the same objects; furthermore, since there are only finitely many atomic sentences in the language, we may also assume that they satisfy the same atomic sentences (we can take a subsequence of the \mathcal{M}_n’s otherwise). Let \mathcal{M} be the union of all the \mathcal{M}_n’s, i.e., the unique minimal structure having each \mathcal{M}_n as a substructure. As in the proof of ??, let \mathcal{M}^* be the extension of \mathcal{M} with domain $|\mathcal{M}| \cup |\mathcal{M}|^\omega$, in the expanded language comprising the concatenation predicates P and Q.

Similarly, define \mathcal{N}_n, \mathcal{N} and \mathcal{N}^*. Now let \mathcal{M} be the structure whose domain comprises the domains of \mathcal{M}^* and \mathcal{N}^* as well as the natural numbers \mathbb{N} along with their natural ordering \leq, in the language with extra predicates representing the domains $|\mathcal{M}|$, $|\mathcal{N}|$, $|\mathcal{M}|^\omega$ and $|\mathcal{N}|^\omega$ as well as predicates coding the
domains of \mathcal{M}_n and \mathcal{N}_n in the sense that:

$$|\mathcal{M}_n| = \{a \in |\mathcal{M}| : R(a, n)\}; \quad |\mathcal{N}_n| = \{a \in |\mathcal{N}| : S(a, n)\};$$

$$|\mathcal{M}|^{<\omega}_n = \{a \in |\mathcal{M}|^{<\omega} : R(a, n)\}; \quad |\mathcal{N}|^{<\omega}_n = \{a \in |\mathcal{N}|^{<\omega} : S(a, n)\}.$$

The structure \mathcal{M} also has a ternary relation J such that $J(n, a, b)$ holds if and only if $I_n(a, b)$.

Now there is a sentence θ in the language L augmented by R, S, J, etc., saying that \leq is a discrete linear ordering with first but no last element and such that $\mathcal{M}_n \models = \alpha$, $\mathcal{N}_n \not\models = \alpha$, and for each n in the ordering, $J(n, a, b)$ holds if and only if $I_n(a, b)$.

Using the Compactness Property, we can find a model \mathcal{M}^* of θ in which the ordering contains a non-standard element n^*. In particular then \mathcal{M}^* will contain substructures \mathcal{M}_{n^*} and \mathcal{N}_{n^*} such that $\mathcal{M}_{n^*} \models_L = \alpha$ and $\mathcal{N}_{n^*} \not\models_L = \alpha$. But now we can define a set I of pairs of k-tuples from $|\mathcal{M}_{n^*}|$ and $|\mathcal{N}_{n^*}|$ by putting $(a, b) \in I$ if and only if $J(n^* - k, a, b)$, where k is the length of a and b. Since n^* is non-standard, for each standard k we have that $n^* - k > 0$, and the set I witnesses the fact that $\mathcal{M}_{n^*} \simeq_p \mathcal{N}_{n^*}$. But by $??$, \mathcal{M}_{n^*} is L-equivalent to \mathcal{N}_{n^*}, a contradiction.

Photo Credits

Bibliography