Definition lin.1. An abstract logic is a pair \(\langle L, \models_L \rangle \), where \(L \) is a function that assigns to each language \(L \) a set \(L(L) \) of sentences, and \(\models_L \) is a relation between structures for the language \(L \) and elements of \(L(L) \). In particular, \(\langle F, \models \rangle \) is ordinary first-order logic, i.e., \(F \) is the function assigning to the language \(L \) the set of first-order sentences built from the constants in \(L \), and \(\models \) is the satisfaction relation of first-order logic.

Notice that we are still employing the same notion of structure for a given language as for first-order logic, but we do not presuppose that sentences are build up from the basic symbols in \(L \) in the usual way, nor that the relation \(\models_L \) is recursively defined in the same way as for first-order logic. So for instance the definition, being completely general, is intended to capture the case where sentences in \(\langle L, \models_L \rangle \) contain infinitely long conjunctions or disjunction, or quantifiers other than \(\exists \) and \(\forall \) (e.g., “there are infinitely many \(x \) such that . . . ”), or perhaps infinitely long quantifier prefixes. To emphasize that “sentences” in \(L(L) \) need not be ordinary sentences of first-order logic, in this chapter we use variables \(\alpha, \beta, \ldots \) to range over them, and reserve \(\varphi, \psi, \ldots \) for ordinary first-order formulas.

Definition lin.2. Let \(\text{Mod}^L(\alpha) \) denote the class \(\{ M : M \models_L \alpha \} \). If the language needs to be made explicit, we write \(\text{Mod}^L(\alpha) \). Two structures \(M \) and \(N \) for \(L \) are elementarily equivalent in \(\langle L, \models_L \rangle \), written \(M \equiv_L N \), if the same sentences from \(L(L) \) are true in each.

Definition lin.3. An abstract logic \(\langle L, \models_L \rangle \) for the language \(L \) is normal if it satisfies the following properties:

1. \((L\text{-Monotony})\) For languages \(L \) and \(L' \), if \(L \subseteq L' \), then \(L(L) \subseteq L(L') \).

2. \((\text{Expansion Property})\) For each \(\alpha \in L(L) \) there is a finite subset \(L' \) of \(L \) such that the relation \(M \models_L \alpha \) depends only on the reduct of \(M \) to \(L' \); i.e., if \(M \) and \(N \) have the same reduct to \(L' \) then \(M \models_L \alpha \) if and only if \(N \models_L \alpha \).

3. \((\text{Isomorphism Property})\) If \(M \models_L \alpha \) and \(M \cong N \) then also \(N \models_L \alpha \).

4. \((\text{Renaming Property})\) The relation \(\models_L \) is preserved under renaming: if the language \(L' \) is obtained from \(L \) by replacing each symbol \(P \) by a symbol \(P' \) of the same arity and each constant \(c \) by a distinct constant \(c' \), then for each structure \(M \) and sentence \(\alpha \), \(M \models_L \alpha \) if and only if \(M' \models_L \alpha' \), where \(M' \) is the \(L' \)-structure corresponding to \(L \) and \(\alpha' \in L(L') \).

5. \((\text{Boolean Property})\) The abstract logic \(\langle L, \models_L \rangle \) is closed under the Boolean connectives in the sense that for each \(\alpha \in L(L) \) there is a \(\beta \in L(L) \) such that \(M \models_L \beta \) if and only if \(M \models_L \alpha \), and for each \(\alpha \) and \(\beta \) there is a \(\gamma \).
such that $\text{Mod}_L(\gamma) = \text{Mod}_L(\alpha) \cap \text{Mod}_L(\beta)$. Similarly for atomic formulas and the other connectives.

6. (*Quantifier Property*) For each constant c in \mathcal{L} and $\alpha \in L(\mathcal{L})$ there is a $\beta \in L(\mathcal{L})$ such that

$$\text{Mod}_L'(\beta) = \{ \mathcal{M} : (\mathcal{M}, a) \in \text{Mod}_L(\alpha) \text{ for some } a \in |\mathcal{M}| \},$$

where $\mathcal{L}' = \mathcal{L} \setminus \{ c \}$ and (\mathcal{M}, a) is the expansion of \mathcal{M} to \mathcal{L} assigning a to c.

7. (*Relativization Property*) Given a sentence $\alpha \in L(\mathcal{L})$ and symbols R, c_1, \ldots, c_n not in \mathcal{L}, there is a sentence $\beta \in L(\mathcal{L} \cup \{ R, c_1, \ldots, c_n \})$ called the relativization of α to $R(x, c_1, \ldots, c_n)$, such that for each structure \mathcal{M}:

$$(\mathcal{M}, X, b_1, \ldots, b_n) \models L \beta$$

if and only if $\mathcal{M} \models L \alpha$, where \mathcal{M} is the substructure of \mathcal{M} with domain $|\mathcal{M}| = \{ a \in |\mathcal{M}| : R^{\mathcal{M}}(a, b_1, \ldots, b_n) \}$ (see ??), and $(\mathcal{M}, X, b_1, \ldots, b_n)$ is the expansion of \mathcal{M} interpreting R, c_1, \ldots, c_n by X, b_1, \ldots, b_n, respectively (with $X \subseteq M^{n+1}$).

Definition lin.4. Given two abstract logics $\langle L_1, \models_L \rangle$ and $\langle L_2, \models_L \rangle$ we say that the latter is at least as expressive as the former, written $\langle L_1, \models_L \rangle \leq \langle L_2, \models_L \rangle$, if for each language \mathcal{L} and sentence $\alpha \in L_1(\mathcal{L})$ there is a sentence $\beta \in L_2(\mathcal{L})$ such that $\text{Mod}_L(\alpha) = \text{Mod}_L(\beta)$. The logics $\langle L_1, \models_L \rangle$ and $\langle L_2, \models_L \rangle$ are equivalent if $\langle L_1, \models_L \rangle \leq \langle L_2, \models_L \rangle$ and $\langle L_2, \models_L \rangle \leq \langle L_1, \models_L \rangle$.

Remark 1. First-order logic, i.e., the abstract logic $\langle F, \models \rangle$, is normal. In fact, the above properties are mostly straightforward for first-order logic. We just remark that the expansion property comes down to extensionality, and that the relativization of a sentence α to $R(x, c_1, \ldots, c_n)$ is obtained by replacing each subformula $\forall x \beta$ by $\forall x (R(x, c_1, \ldots, c_n) \rightarrow \beta)$. Moreover, if $\langle L, \models_L \rangle$ is normal, then $\langle F, \models \rangle \leq \langle L, \models_L \rangle$, as can be shown by induction on first-order formulas. Accordingly, with no loss in generality, we can assume that every first-order sentence belongs to every normal logic.

Photo Credits

Bibliography

2