int.1 Introduction

mod:int:int: sec The interpolation theorem is the following result: Suppose $\vDash \varphi \to \psi$. Then there is a sentence χ such that $\vDash \varphi \to \chi$ and $\vDash \chi \to \psi$. Moreover, every constant symbol, function symbol, and predicate symbol (other than =) in χ occurs both in φ and ψ . The sentence χ is called an *interpolant* of φ and ψ .

The interpolation theorem is interesting in its own right, but its main importance lies in the fact that it can be used to prove results about definability in a theory, and the conditions under which combining two consistent theories results in a consistent theory. The first result is known as the Beth definability theorem; the second, Robinson's joint consistency theorem.

Photo Credits

Bibliography