Chapter udf

The Interpolation Theorem

int.1 Introduction

The interpolation theorem is the following result: Suppose $\models \varphi \rightarrow \psi$. Then there is a sentence χ such that $\models \varphi \rightarrow \chi$ and $\models \chi \rightarrow \psi$. Moreover, every constant symbol, function symbol, and predicate symbol (other than $=$) in χ occurs both in φ and ψ. The sentence χ is called an interpolant of φ and ψ.

The interpolation theorem is interesting in its own right, but its main importance lies in the fact that it can be used to prove results about definability in a theory, and the conditions under which combining two consistent theories results in a consistent theory. The first result is known as the Beth definability theorem; the second, Robinson’s joint consistency theorem.

int.2 Separation of Sentences

A bit of groundwork is needed before we can proceed with the proof of the interpolation theorem. An interpolant for φ and ψ is a sentence χ such that $\varphi \models \chi$ and $\chi \models \psi$. By contraposition, the latter is true iff $\neg \psi \models \neg \chi$. A sentence χ with this property is said to separate φ and $\neg \psi$. So finding an interpolant for φ and ψ amounts to finding a sentence that separates φ and $\neg \psi$. As so often, it will be useful to consider a generalization: a sentence that separates two sets of sentences.

Definition int.1. A sentence χ separates sets of sentences Γ and Δ if and only if $\Gamma \models \chi$ and $\Delta \models \neg \chi$. If no such sentence exists, then Γ and Δ are inseparable.

The inclusion relations between the classes of models of Γ, Δ and χ are represented below:

Lemma int.2. Suppose \mathcal{L}_0 is the language containing every constant symbol, function symbol and predicate symbol (other than $=$) that occurs in both Γ and Δ, and let \mathcal{L}_0' be obtained by the addition of infinitely many new constant
symbols c_n for $n \geq 0$. Then if Γ and Δ are inseparable in \mathcal{L}_0, they are also inseparable in \mathcal{L}'_0.

Proof. We proceed indirectly: suppose by way of contradiction that Γ and Δ are separated in \mathcal{L}'_0. Then $\Gamma \models \chi[c/x]$ and $\Delta \models \neg \chi[c/x]$ for some $\chi \in \mathcal{L}_0$ (where c is a new constant symbol—the case where χ contains more than one such new constant symbol is similar). By compactness, there are finite subsets Γ_0 of Γ and Δ_0 of Δ such that $\Gamma_0 \models \chi[c/x]$ and $\Delta_0 \models \neg \chi[c/x]$. Let γ be the conjunction of all formulas in Γ_0 and δ the conjunction of all formulas in Δ_0. Then

$$
\gamma \models \chi[c/x], \quad \delta \models \neg \chi[c/x].
$$

From the former, by Generalization, we have $\gamma \models \forall x \chi$, and from the latter by contraposition, $\chi[c/x] \models \neg \delta$, whence also $\forall x \chi \models \neg \delta$. Contraposition again gives $\delta \models \neg \forall x \chi$. By monotonicity,

$$
\Gamma \models \forall x \chi, \quad \Delta \models \neg \forall x \chi,
$$

so that $\forall x \chi$ separates Γ and Δ in \mathcal{L}_0.

Lemma int.3. Suppose that $\Gamma \cup \{\exists x \sigma\}$ and Δ are inseparable, and c is a new constant symbol not in Γ, Δ, or σ. Then $\Gamma \cup \{\exists x \sigma, \sigma[c/x]\}$ and Δ are also inseparable.

Proof. Suppose for contradiction that χ separates $\Gamma \cup \{\exists x \sigma, \sigma[c/x]\}$ and Δ, while at the same time $\Gamma \cup \{\exists x \sigma\}$ and Δ are inseparable. We distinguish two cases:

1. c does not occur in χ: in this case $\Gamma \cup \{\exists x \sigma, \neg \chi\}$ is satisfiable (otherwise χ separates $\Gamma \cup \{\exists x \sigma\}$ and Δ). It remains so if $\sigma[c/x]$ is added, so χ does not separate $\Gamma \cup \{\exists x \sigma, \sigma[c/x]\}$ and Δ after all.

2. c does occur in χ so that χ has the form $\chi[c/x]$. Then we have that

$$
\Gamma \cup \{\exists x \sigma, \sigma[c/x]\} \models \chi[c/x],
$$

whence $\Gamma, \exists x \sigma \models \forall x (\sigma \rightarrow \chi)$ by the Deduction Theorem and Generalization, and finally $\Gamma \cup \{\exists x \sigma\} \models \exists x \chi$. On the other hand, $\Delta \models \neg \chi[c/x]$ and hence by Generalization $\Delta \models \neg \exists x \chi$. So $\Gamma \cup \{\exists x \sigma\}$ and Δ are separable, a contradiction.

interpolation rev: ad37848 (2024-05-01) by OLP / CC–BY
Craig’s Interpolation Theorem

Theorem int.4 (Craig’s Interpolation Theorem). If $\varphi \rightarrow \psi$, then there is a sentence χ such that $\models \varphi \rightarrow \chi$ and $\models \chi \rightarrow \psi$, and every constant symbol, function symbol, and predicate symbol (other than $=$) in χ occurs both in φ and ψ. The sentence χ is called an interpolant of φ and ψ.

Proof. Suppose L_1 is the language of φ and L_2 is the language of ψ. Let $L_0 = L_1 \cap L_2$. For each $i \in \{0, 1, 2\}$, let L^*_i be obtained from L_i by adding the infinitely many new constant symbols c_0, c_1, c_2, \ldots

If φ is unsatisfiable ($\models \neg \psi$ is valid), $\exists x x \neq x$ is an interpolant. If $\neg \psi$ is unsatisfiable (and hence ψ is valid), $\exists x x = x$ is an interpolant. So we may assume also that both φ and $\neg \psi$ are satisfiable.

In order to prove the contrapositive of the Interpolation Theorem, assume that there is no interpolant for φ and ψ. In other words, assume that $\{\varphi\}$ and $\{\neg \psi\}$ are inseparable in L_0.

Our goal is to extend the pair $\{\varphi\}, \{\neg \psi\}$ to a maximally inseparable pair (Γ^*, Δ^*). Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ enumerate the sentences of L_1, and $\psi_0, \psi_1, \psi_2, \ldots$ enumerate the sentences of L_2. We define two increasing sequences of sets of sentences (Γ_n, Δ_n) for $n \geq 0$, as follows. Put $\Gamma_0 = \{\varphi\}$ and $\Delta_0 = \{\neg \psi\}$.

Assuming (Γ_n, Δ_n) are already defined, define Γ_{n+1} and Δ_{n+1} by:

1. If $\Gamma_n \cup \{\varphi_n\}$ and Δ_n are inseparable in L'_0, put φ_n in Γ_{n+1}. Moreover, if φ_n is an existential formula $\exists x \sigma$ then pick a new constant symbol c not occurring in $\Gamma_n, \Delta_n, \varphi_n$ or ψ_n, and put $\sigma[c/x]$ in Γ_{n+1}.

2. If Γ_{n+1} and $\Delta_n \cup \{\psi_n\}$ are inseparable in L'_0, put ψ_n in Δ_{n+1}. Moreover, if ψ_n is an existential formula $\exists x \sigma$, then pick a new constant symbol c not occurring in $\Gamma_{n+1}, \Delta_n, \varphi_n$ or ψ_n, and put $\sigma[c/x]$ in Δ_{n+1}.

Finally, define:

$$\Gamma^* = \bigcup_{n \geq 0} \Gamma_n, \quad \Delta^* = \bigcup_{n \geq 0} \Delta_n.$$

By simultaneous induction on n we can now prove:

1. Γ_n and Δ_n are inseparable in L'_0;

2. Γ_{n+1} and Δ_n are inseparable in L'_0.

The basis for (1) is given by Lemma int.2. For part (2), we need to distinguish three cases:

1. If $\Gamma_0 \cup \{\varphi_0\}$ and Δ_0 are separable, then $\Gamma_1 = \Gamma_0$ and (2) is just (1);

2. If $\Gamma_1 = \Gamma_0 \cup \{\varphi_0\}$, then Γ_1 and Δ_0 are inseparable by construction.
This completes the basis of the induction for (1) and (2) above. Now for the inductive step. For (1), if \(\Delta_{n+1} = \Delta_n \cup \{ \psi_n \} \) then \(\Gamma_{n+1} \) and \(\Delta_{n+1} \) are inseparable by construction (even when \(\psi_n \) is existential, by Lemma int.3); if \(\Delta_{n+1} = \Delta_n \) (because \(\Gamma_{n+1} \) and \(\Delta_n \cup \{ \psi_n \} \) are separable), then we use the induction hypothesis on (2). For the inductive step for (2), if \(\Gamma_{n+2} = \Gamma_{n+1} \cup \{ \varphi_{n+1} \} \) then \(\Gamma_{n+2} \) and \(\Delta_{n+1} \) are inseparable by construction (even when \(\varphi_{n+1} \) is existential, by Lemma int.3); and if \(\Gamma_{n+2} = \Gamma_{n+1} \) then we use the inductive case for (1) just proved. This concludes the induction on (1) and (2).

It follows that \(\Gamma^* \) and \(\Delta^* \) are inseparable; if not, by compactness, there is \(n \geq 0 \) that separates \(\Gamma_n \) and \(\Delta_n \), against (1). In particular, \(\Gamma^* \) and \(\Delta^* \) are consistent: for if the former or the latter is inconsistent, then they are separated by \(\exists x \, x \neq x \) or \(\forall x \, x = x \), respectively.

We now show that \(\Gamma^* \) is maximally consistent in \(\mathcal{L}'_2 \) and likewise \(\Delta^* \) in \(\mathcal{L}'_2 \). For the former, suppose that \(\varphi_n \notin \Gamma^* \) and \(\neg \varphi_n \notin \Gamma^* \), for some \(n \geq 0 \). If \(\varphi_n \notin \Gamma^* \) then \(\Gamma_n \cup \{ \varphi_n \} \) is separable from \(\Delta_n \), and so there is \(\chi \in \mathcal{L}'_2 \) such that both:

\[
\Gamma^* \models \varphi_n \rightarrow \chi, \quad \Delta^* \models \neg \chi.
\]

Likewise, if \(\neg \varphi_n \notin \Gamma^* \), there is \(\chi' \in \mathcal{L}'_2 \) such that both:

\[
\Gamma^* \models \neg \varphi_n \rightarrow \chi', \quad \Delta^* \models \neg \chi'.
\]

By propositional logic, \(\Gamma^* \models \chi \lor \chi' \) and \(\Delta^* \models \neg (\chi \lor \chi') \), so \(\chi \lor \chi' \) separates \(\Gamma^* \) and \(\Delta^* \). A similar argument establishes that \(\Delta^* \) is maximal.

Finally, we show that \(\Gamma^* \cap \Delta^* \) is maximally consistent in \(\mathcal{L}'_0 \). It is obviously consistent, since it is the intersection of consistent sets. To show maximality, let \(\sigma \in \mathcal{L}'_0 \). Now, \(\Gamma^* \) is maximal in \(\mathcal{L}'_1 \supseteq \mathcal{L}'_0 \), and similarly \(\Delta^* \) is maximal in \(\mathcal{L}'_2 \supseteq \mathcal{L}'_0 \). It follows that either \(\sigma \in \Gamma^* \) or \(\neg \sigma \in \Gamma^* \), and either \(\sigma \in \Delta^* \) or \(\neg \sigma \in \Delta^* \). If \(\sigma \in \Gamma^* \cap \Delta^* \) then \(\sigma \) would separate \(\Gamma^* \) and \(\Delta^* \); and if \(\neg \sigma \in \Gamma^* \cap \Delta^* \) then \(\Gamma^* \) and \(\Delta^* \) would be separated by \(\neg \sigma \). Hence, either \(\sigma \in \Gamma^* \cap \Delta^* \) or \(\neg \sigma \in \Gamma^* \cap \Delta^* \), and \(\Gamma^* \cap \Delta^* \) is maximal.

Since \(\Gamma^* \) is maximally consistent, it has a model \(\mathcal{M}'_1 \) whose domain \(|\mathcal{M}'_1| \) comprises all and only the elements \(c_{\mathcal{M}'_1} \) interpreting the constant symbols—just like in the proof of the completeness theorem (??). Similarly, \(\Delta^* \) has a model \(\mathcal{M}'_2 \) whose domain \(|\mathcal{M}'_2| \) is given by the interpretations \(c_{\mathcal{M}'_2} \) of the constant symbols.

Let \(\mathcal{M}_1 \) be obtained from \(\mathcal{M}'_1 \) by dropping interpretations for constant symbols, function symbols, and predicate symbols in \(L_1 \setminus L'_0 \), and similarly for \(\mathcal{M}_2 \). Then the map \(h: M_1 \rightarrow M_2 \) defined by \(h(c_{\mathcal{M}'_1}) = c_{\mathcal{M}'_2} \) is an isomorphism in \(\mathcal{L}'_0 \), because \(\Gamma^* \cap \Delta^* \) is maximally consistent in \(\mathcal{L}'_0 \), as shown. This follows because any \(\mathcal{L}'_0 \)-sentence either belongs to both \(\Gamma^* \) and \(\Delta^* \), or to neither: so
The Interpolation Theorem.

whence ML formulas of interpolation

Suppose Definition int.5.

P bols

Suppose Definition int.6.

P bol

implicitly defines in this way—whenever it

P of

ing completely—a relation. A theory may also be such that the interpretation

entails) a formalized explicit definition, i.e.,

the

n terms of \(\chi \) variables which does not involve \(c \).

One important application of the interpolation theorem is Beth’s definability

theorem. To define an

n-place predicate symbol \(P \) explicitly defines \(P \) if and only if \(\chi(x_1, \ldots, x_n) \leftrightarrow \chi(x_1, \ldots, x_n) \).

But an explicit definition is only one way of defining—in the sense of determining completely—a relation. A theory may also be such that the interpretation of \(P \) is fixed by the interpretation of the rest of the language in any model. The definability theorem states that whenever a theory fixes the interpretation of \(P \) in this way—whenever it implicitly defines \(P \)—then it also explicitly defines it.

Definition int.5. Suppose \(L \) is a language not containing the predicate symbol \(P \). A set \(\Sigma(P) \) of sentences of \(L \cup \{ P \} \) explicitly defines \(P \) if and only if there is a formula \(\chi(x_1, \ldots, x_n) \) of \(L \) such that

\[\Sigma(P) \models \forall x_1 \ldots \forall x_n (P(x_1, \ldots, x_n) \leftrightarrow \chi(x_1, \ldots, x_n)). \]

Definition int.6. Suppose \(L \) is a language not containing the predicate symbols \(P \) and \(P' \). A set \(\Sigma(P) \) of sentences of \(L \cup \{ P \} \) implicitly defines \(P \) if and only if

\[\Sigma(P) \cup \Sigma(P') \models \forall x_1 \ldots \forall x_n (P(x_1, \ldots, x_n) \leftrightarrow P'(x_1, \ldots, x_n)). \]
where \(\Sigma(P') \) is the result of uniformly replacing \(P \) with \(P' \) in \(\Sigma(P) \).

In other words, for any model \(\mathfrak{M} \) and \(R, R' \subseteq |\mathfrak{M}|^n \), if both \((\mathfrak{M}, R) \models \Sigma(P) \) and \((\mathfrak{M}, R') \models \Sigma(P') \), then \(R = R' \); where \((\mathfrak{M}, R) \) is the structure \(\mathfrak{M}' \) for the expansion of \(\mathcal{L} \) to \(\mathcal{L} \cup \{P\} \) such that \(P^{\mathfrak{M}'} = R \), and similarly for \((\mathfrak{M}, R') \).

Theorem int.7 (Beth Definability Theorem). A set \(\Sigma(P) \) of \(\mathcal{L} \cup \{P\} \)-formulas implicitly defines \(P \) if and only \(\Sigma(P) \) explicitly defines \(P \).

Proof. If \(\Sigma(P) \) explicitly defines \(P \) then both

\[
\Sigma(P) \models \forall x_1 \ldots \forall x_n (P(x_1, \ldots, x_n) \leftrightarrow \chi(x_1, \ldots, x_n))
\]

\[
\Sigma(P') \models \forall x_1 \ldots \forall x_n (P'(x_1, \ldots, x_n) \leftrightarrow \chi(x_1, \ldots, x_n))
\]

and the conclusion follows. For the converse: assume that \(\Sigma(P) \) implicitly defines \(P \). First, we add constant symbols \(c_1, \ldots, c_n \) to \(\mathcal{L} \). Then

\[
\Sigma(P) \cup \Sigma(P') \models P(c_1, \ldots, c_n) \rightarrow P'(c_1, \ldots, c_n).
\]

By compactness, there are finite sets \(\Delta_0 \subseteq \Sigma(P) \) and \(\Delta_1 \subseteq \Sigma(P') \) such that

\[
\Delta_0 \cup \Delta_1 \models P(c_1, \ldots, c_n) \rightarrow P'(c_1, \ldots, c_n).
\]

Let \(\theta(P) \) be the conjunction of all sentences \(\varphi(P) \) such that either \(\varphi(P) \in \Delta_0 \) or \(\varphi(P') \in \Delta_1 \) and let \(\theta(P') \) be the conjunction of all sentences \(\varphi(P') \) such that either \(\varphi(P) \in \Delta_0 \) or \(\varphi(P) \in \Delta_1 \). Then \(\theta(P) \land \theta(P') \models P(c_1, \ldots, c_n) \rightarrow P'(c_1, \ldots, c_n) \). We can re-arrange this so that each predicate symbol occurs on one side of \(\models \):

\[
\theta(P) \land P(c_1, \ldots, c_n) \models \theta(P') \rightarrow P'(c_1, \ldots, c_n).
\]

By Craig’s Interpolation Theorem there is a sentence \(\chi(c_1, \ldots, c_n) \) not containing \(P \) or \(P' \) such that:

\[
\theta(P) \land P(c_1, \ldots, c_n) \models \chi(c_1, \ldots, c_n) ; \quad \chi(c_1, \ldots, c_n) \models \theta(P') \rightarrow P'(c_1, \ldots, c_n).
\]

From the former of these two entailments we have: \(\theta(P) \models P(c_1, \ldots, c_n) \rightarrow \chi(c_1, \ldots, c_n) \). And from the latter, since an \(\mathcal{L} \cup \{P\} \)-model \((\mathfrak{M}, R) \models \varphi(P) \) if and only if the corresponding \(\mathcal{L} \cup \{P'\} \)-model \((\mathfrak{M}, R) \models \varphi(P) \), we have \(\chi(c_1, \ldots, c_n) \models \theta(P) \rightarrow P(c_1, \ldots, c_n) \), from which:

\[
\theta(P) \models \chi(c_1, \ldots, c_n) \rightarrow P(c_1, \ldots, c_n).
\]

Putting the two together, \(\theta(P) \models P(c_1, \ldots, c_n) \leftrightarrow \chi(c_1, \ldots, c_n) \), and by monotonicity and generalization also

\[
\Sigma(P) \models \forall x_1 \ldots \forall x_n (P(x_1, \ldots, x_n) \leftrightarrow \chi(x_1, \ldots, x_n)).
\]

\(\square\)
Photo Credits
Bibliography