Craig’s Interpolation Theorem

Theorem int.1 (Craig’s Interpolation Theorem). If $\varphi \rightarrow \psi$, then there is a sentence χ such that $\models \varphi \rightarrow \chi$ and $\models \chi \rightarrow \psi$, and every constant symbol, function symbol, and predicate symbol (other than $=$) in χ occurs both in φ and ψ. The sentence χ is called an interpolant of φ and ψ.

Proof. Suppose \mathcal{L}_1 is the language of φ and \mathcal{L}_2 is the language of ψ. Let $\mathcal{L}_0 = \mathcal{L}_1 \cap \mathcal{L}_2$. For each $i \in \{0, 1, 2\}$, let \mathcal{L}_i' be obtained from \mathcal{L}_i by adding the infinitely many new constant symbols c_0, c_1, c_2, \ldots.

If φ is unsatisfiable, $\exists x \neq x$ is an interpolant. If $\neg \psi$ is unsatisfiable (and hence ψ is valid), $\exists x = x$ is an interpolant. So we may assume also that both φ and $\neg \psi$ are satisfiable.

In order to prove the contrapositive of the Interpolation Theorem, assume that there is no interpolant for φ and ψ. In other words, assume that $\{\varphi\}$ and $\{\neg \psi\}$ are inseparable in \mathcal{L}_0.

Our goal is to extend the pair $(\{\varphi\}, \{\neg \psi\})$ to a maximally inseparable pair (Γ^*, Δ^*). Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ enumerate the sentences of \mathcal{L}_1, and $\psi_0, \psi_1, \psi_2, \ldots$ enumerate the sentences of \mathcal{L}_2. We define two increasing sequences of sets of sentences (Γ_n, Δ_n), for $n \geq 0$, as follows. Put $\Gamma_0 = \{\varphi\}$ and $\Delta_0 = \{\neg \psi\}$.

Assuming (Γ_n, Δ_n) are already defined, define Γ_{n+1} and Δ_{n+1} by:

1. If $\Gamma_n \cup \{\varphi_n\}$ and Δ_n are inseparable in \mathcal{L}_0', put φ_n in Γ_{n+1}. Moreover, if φ_n is an existential formula $\exists x \sigma$ then pick a new constant symbol c not occurring in Γ_n, Δ_n, φ_n or ψ_n, and put $\sigma[c/x]$ in Γ_{n+1}.

2. If Γ_{n+1} and $\Delta_n \cup \{\psi_n\}$ are inseparable in \mathcal{L}_0', put ψ_n in Δ_{n+1}. Moreover, if ψ_n is an existential formula $\exists x \sigma$, then pick a new constant symbol c, not occurring in Γ_{n+1}, Δ_n, φ_n or ψ_n, and put $\sigma[c/x]$ in Δ_{n+1}.

Finally, define:

$$\Gamma^* = \bigcup_{n \geq 0} \Gamma_n, \quad \Delta^* = \bigcup_{n \geq 0} \Delta_n.$$

By simultaneous induction on n we can now prove:

1. Γ_n and Δ_n are inseparable in \mathcal{L}_0';
2. Γ_{n+1} and Δ_n are inseparable in \mathcal{L}_0'.

The basis for (1) is given by ??; For part (2), we need to distinguish three cases:

1. If $\Gamma_0 \cup \{\varphi_0\}$ and Δ_0 are separable, then $\Gamma_1 = \Gamma_0$ and (2) is just (1);
2. If $\Gamma_1 = \Gamma_0 \cup \{\varphi_0\}$, then Γ_1 and Δ_0 are inseparable by construction.
3. It remains to consider the case where \(\phi_0 \) is existential, so that \(\Gamma_1 = \Gamma_0 \cup \{ \exists x \sigma, \sigma[c/x] \} \). By construction, \(\Gamma_0 \cup \{ \exists x \sigma \} \) and \(\Delta_0 \) are inseparable, so that by ?? also \(\Gamma_0 \cup \{ \exists x \sigma, \sigma[c/x] \} \) and \(\Delta_0 \) are inseparable.

This completes the basis of the induction for (1) and (2) above. Now for the inductive step. For (1), if \(\Delta_{n+1} = \Delta_n \cup \{ \psi_n \} \) then \(\Gamma_{n+1} \) and \(\Delta_{n+1} \) are inseparable by construction (even when \(\psi_n \) is existential, by ??); if \(\Delta_{n+1} = \Delta_n \) (because \(\Gamma_{n+1} \) and \(\Delta_n \cup \{ \psi_n \} \) are separable), then we use the induction hypothesis on (2). For the inductive step for (2), if \(\Gamma_{n+2} = \Gamma_{n+1} \cup \{ \varphi_{n+1} \} \) then \(\Gamma_{n+2} \) and \(\Delta_{n+1} \) are inseparable by construction (even when \(\varphi_{n+1} \) is existential, by ??); and if \(\Gamma_{n+2} = \Gamma_{n+1} \) then we use the inductive case for (1) just proved. This concludes the induction on (1) and (2).

It follows that \(\Gamma^* \) and \(\Delta^* \) are inseparable; if not, by compactness, there is \(n \geq 0 \) that separates \(\Gamma_n \) and \(\Delta_n \), against (1). In particular, \(\Gamma^* \) and \(\Delta^* \) are consistent: for if the former or the latter is inconsistent, then they are separated by \(\exists x \neq x \) or \(\forall x x = x \), respectively.

We now show that \(\Gamma^* \) is maximally consistent in \(\mathcal{L}'_1 \) and likewise \(\Delta^* \) in \(\mathcal{L}'_2 \). For the former, suppose that \(\varphi_n \notin \Gamma^* \) and \(\neg \varphi_n \notin \Gamma^* \), for some \(n \geq 0 \). If \(\varphi_n \notin \Gamma^* \) then \(\Gamma_n \cup \{ \varphi_n \} \) is separable from \(\Delta_n \), and so there is \(\chi \in \mathcal{L}_0' \) such that both:

\[
\Gamma^* \models \varphi_n \rightarrow \chi, \quad \Delta^* \models \neg \chi.
\]

Likewise, if \(\neg \varphi_n \notin \Gamma^* \), there is \(\chi' \in \mathcal{L}_0' \) such that both:

\[
\Gamma^* \models \neg \varphi_n \rightarrow \chi', \quad \Delta^* \models \neg \chi'.
\]

By propositional logic, \(\Gamma^* \models \chi \lor \chi' \) and \(\Delta^* \models \neg (\chi \lor \chi') \), so \(\chi \lor \chi' \) separates \(\Gamma^* \) and \(\Delta^* \). A similar argument establishes that \(\Delta^* \) is maximal.

Finally, we show that \(\Gamma^* \cap \Delta^* \) is maximally consistent in \(\mathcal{L}_0' \). It is obviously consistent, since it is the intersection of consistent sets. To show maximality, let \(\sigma \in \mathcal{L}_0' \). Now, \(\Gamma^* \) is maximal in \(\mathcal{L}_1' \supseteq \mathcal{L}_0' \), and similarly \(\Delta^* \) is maximal in \(\mathcal{L}_2' \supseteq \mathcal{L}_0' \). It follows that either \(\sigma \in \Gamma^* \) or \(\neg \sigma \in \Gamma^* \), and either \(\sigma \in \Delta^* \) or \(\neg \sigma \in \Delta^* \). If \(\sigma \in \Gamma^* \) and \(\neg \sigma \in \Gamma^* \), then \(\Gamma^* \) and \(\Delta^* \) would separate \(\Gamma^* \) and \(\Delta^* \); and if \(\neg \sigma \in \Gamma^* \) and \(\sigma \in \Delta^* \) then \(\Gamma^* \) and \(\Delta^* \) would be separated by \(\neg \sigma \). Hence, either \(\sigma \in \Gamma^* \cap \Delta^* \) or \(\neg \sigma \in \Gamma^* \cap \Delta^* \), and \(\Gamma^* \cap \Delta^* \) is maximal.

Since \(\Gamma^* \) is maximally consistent, it has a model \(\mathcal{M}'_1 \) whose domain \(|\mathcal{M}'_1| \) comprises all and only the elements \(c^{\mathcal{M}_1}_i \) interpreting the constant symbols—just like in the proof of the completeness theorem (??). Similarly, \(\Delta^* \) has a model \(\mathcal{M}'_2 \) whose domain \(|\mathcal{M}'_2| \) is given by the interpretations \(c^{\mathcal{M}_2}_i \) of the constant symbols.

Let \(\mathcal{M}_1 \) be obtained from \(\mathcal{M}'_1 \) by dropping interpretations for constant symbols, function symbols, predicate symbols in \(\mathcal{L}'_1 \setminus \mathcal{L}_0' \), and similarly for \(\mathcal{M}_2 \). Then the map \(h \colon M_1 \rightarrow M_2 \) defined by \(h(c^{\mathcal{M}_1}) = c^{\mathcal{M}_2} \) is an isomorphism in \(\mathcal{L}_0' \), because \(\Gamma^* \cap \Delta^* \) is maximally consistent in \(\mathcal{L}_0' \), as shown. This follows because any \(\mathcal{L}_0' \)-sentence either belongs to both \(\Gamma^* \) and \(\Delta^* \), or to neither: so \(c^{\mathcal{M}_1}_i \in P^{\mathcal{M}_1} \) if and only if \(P(c) \in \Gamma^* \) if and only if \(P(c) \in \Delta^* \) if and only if

\[\text{interpolation-proof rev: 666b46f (2020-02-13) by OLP / CC–BY}\]
\(c_{M_2} \in P_{M_2}'\). The other conditions satisfied by isomorphisms can be established similarly.

Let us now define a model \(\mathcal{M}\) for the language \(L_1 \cup L_2\) as follows:

1. The domain \(|\mathcal{M}|\) is just \(|\mathcal{M}_2|\), i.e., the set of all elements \(c_{M_2}';\)
2. If a predicate symbol \(P\) is in \(L_2 \setminus L_1\) then \(P_{\mathcal{M}} = P_{M_2}';\)
3. If a predicate \(P\) is in \(L_1 \setminus L_2\) then \(P_{\mathcal{M}} = h(P_{M_2}');\) i.e., \(\langle c_{M_1}', \ldots, c_{M_n}' \rangle \in P_{\mathcal{M}}\) if and only if \(\langle c_{M_1}', \ldots, c_{M_n}' \rangle \in P_{M_2}';\)
4. If a predicate symbol \(P\) is in \(L_0\) then \(P_{\mathcal{M}} = P_{M_2}';\)
5. Function symbols of \(L_1 \cup L_2\), including constant symbols, are handled similarly.

Finally, one shows by induction on formulas that \(\mathcal{M}\) agrees with \(\mathcal{M}_1'\) on all formulas of \(L_1'\) and with \(\mathcal{M}_2'\) on all formulas of \(L_2'\). In particular, \(\mathcal{M} \models \Gamma_\ast \cup \Delta_\ast\), whence \(\mathcal{M} \models \varphi\) and \(\mathcal{M} \models \neg \psi\), and \(\not\models \varphi \rightarrow \psi\). This concludes the proof of Craig’s Interpolation Theorem.

\(\square\)

Photo Credits

Bibliography