int.1 The Definability Theorem

One important application of the interpolation theorem is Beth’s definability theorem. To define an \(n \)-place relation \(R \) we can give a formula \(\chi \) with \(n \) free variables which does not involve \(R \). This would be an explicit definition of \(R \) in terms of \(\chi \). We can then say also that a theory \(\Sigma(P) \) in a language containing the \(n \)-place predicate symbol \(P \) explicitly defines \(P \) if it contains (or at least entails) a formalized explicit definition, i.e.,

\[
\Sigma(P) \models \forall x_1 \ldots \forall x_n (P(x_1, \ldots, x_n) \leftrightarrow \chi(x_1, \ldots, x_n)).
\]

But an explicit definition is only one way of defining—in the sense of determining completely—a relation. A theory may also be such that the interpretation of \(P \) is fixed by the interpretation of the rest of the language in any model. The definability theorem states that whenever a theory fixes the interpretation of \(P \) in this way—whenever it implicitly defines \(P \)—then it also explicitly defines it.

Definition int.1. Suppose \(\mathcal{L} \) is a language not containing the predicate symbol \(P \). A set \(\Sigma(P) \) of sentences of \(\mathcal{L} \cup \{P\} \) explicitly defines \(P \) if and only if there is a formula \(\chi(x_1, \ldots, x_n) \) of \(\mathcal{L} \) such that

\[
\Sigma(P) \models \forall x_1 \ldots \forall x_n (P(x_1, \ldots, x_n) \leftrightarrow \chi(x_1, \ldots, x_n)).
\]

Definition int.2. Suppose \(\mathcal{L} \) is a language not containing the predicate symbols \(P \) and \(P' \). A set \(\Sigma(P) \) of sentences of \(\mathcal{L} \cup \{P\} \) implicitly defines \(P \) if and only if

\[
\Sigma(P) \cup \Sigma(P') \models \forall x_1 \ldots \forall x_n (P(x_1, \ldots, x_n) \leftrightarrow P'(x_1, \ldots, x_n)),
\]

where \(\Sigma(P') \) is the result of uniformly replacing \(P \) with \(P' \) in \(\Sigma(P) \).

In other words, for any model \(\mathfrak{M} \) and \(R, R' \subseteq |\mathfrak{M}|^n \), if both \((\mathfrak{M}, R) \models \Sigma(P) \) and \((\mathfrak{M}, R') \models \Sigma(P') \), then \(R = R' \); where \((\mathfrak{M}, R) \) is the structure \(\mathfrak{M}^R \) for the expansion of \(\mathcal{L} \) to \(\mathcal{L} \cup \{P\} \) such that \(P^{\mathfrak{M}^R} = R \), and similarly for \((\mathfrak{M}, R') \).

Theorem int.3 (Beth Definability Theorem). A set \(\Sigma(P) \) of \(\mathcal{L} \cup \{P\} \)-formulas implicitly defines \(P \) if and only \(\Sigma(P) \) explicitly defines \(P \).

Proof. If \(\Sigma(P) \) explicitly defines \(P \) then both

\[
\Sigma(P) \models \forall x_1 \ldots \forall x_n (P(x_1, \ldots, x_n) \leftrightarrow \chi(x_1, \ldots, x_n))
\]

\[
\Sigma(P') \models \forall x_1 \ldots \forall x_n (P'(x_1, \ldots, x_n) \leftrightarrow \chi(x_1, \ldots, x_n))
\]

and the conclusion follows. For the converse: assume that \(\Sigma(P) \) implicitly defines \(P \). First, we add constant symbols \(c_1, \ldots, c_n \) to \(\mathcal{L} \). Then

\[
\Sigma(P) \cup \Sigma(P') \models P(c_1, \ldots, c_n) \rightarrow P'(c_1, \ldots, c_n).
\]
By compactness, there are finite sets $\Delta_0 \subseteq \Sigma(P)$ and $\Delta_1 \subseteq \Sigma(P')$ such that

$$\Delta_0 \cup \Delta_1 \models P(c_1, \ldots, c_n) \rightarrow P'(c_1, \ldots, c_n).$$

Let $\theta(P)$ be the conjunction of all sentences $\varphi(P)$ such that either $\varphi(P) \in \Delta_0$ or $\varphi(P') \in \Delta_1$ and let $\theta(P')$ be the conjunction of all sentences $\varphi(P')$ such that either $\varphi(P) \in \Delta_0$ or $\varphi(P') \in \Delta_1$. Then $\theta(P) \land \theta(P') \models P(c_1, \ldots, c_n) \rightarrow P'(c_1 \ldots c_n)$. We can re-arrange this so that each predicate symbol occurs on one side of \models:

$$\theta(P) \land P(c_1, \ldots, c_n) \models \theta(P') \rightarrow P'(c_1, \ldots, c_n).$$

By Craig’s Interpolation Theorem there is a sentence $\chi(c_1, \ldots, c_n)$ not containing P or P' such that:

$$\theta(P) \land P(c_1, \ldots, c_n) \models \chi(c_1, \ldots, c_n); \quad \chi(c_1, \ldots, c_n) \models \theta(P') \rightarrow P'(c_1, \ldots, c_n).$$

From the former of these two entailments we have: $\theta(P) \models P(c_1, \ldots, c_n) \rightarrow \chi(c_1, \ldots, c_n)$. And from the latter, since an $\mathcal{L} \cup \{P\}$-model $(\mathfrak{M}, R) \models \varphi(P)$ if and only if the corresponding $\mathcal{L} \cup \{P'\}$-model $(\mathfrak{M}, R) \models \varphi(P')$, we have $\chi(c_1, \ldots, c_n) \models \theta(P) \rightarrow P(c_1, \ldots, c_n)$, from which:

$$\theta(P) \models \chi(c_1, \ldots, c_n) \rightarrow P(c_1, \ldots, c_n).$$

Putting the two together, $\theta(P) \models P(c_1, \ldots, c_n) \leftrightarrow \chi(c_1, \ldots, c_n)$, and by monotonicity and generalization also

$$\Sigma(P) \models \forall x_1 \ldots \forall x_n (P(x_1, \ldots, x_n) \leftrightarrow \chi(x_1, \ldots, x_n)).$$

\[\Box\]

Photo Credits

Bibliography