bas.1 Substructures

The domain of a structure M may be a subset of another M'. But we should obviously only consider M a “part” of M' if not only $|M| \subseteq |M'|$, but M and M' “agree” in how they interpret the symbols of the language at least on the shared part $|M|$.

Definition bas.1. Given structures M and M' for the same language L, we say that M is a substructure of M', and M' an extension of M, written $M \subseteq M'$, iff

1. $|M| \subseteq |M'|$,
2. For each constant $c \in L$, $c^M = c^{M'}$;
3. For each n-place predicate symbol $f \in L$, $f^M(a_1, \ldots, a_n) = f^{M'}(a_1, \ldots, a_n)$ for all $a_1, \ldots, a_n \in |M|$.
4. For each n-place predicate symbol $R \in L$, $\langle a_1, \ldots, a_n \rangle \in R^M$ iff $\langle a_1, \ldots, a_n \rangle \in R^{M'}$ for all $a_1, \ldots, a_n \in |M|$.

Remark 1. If the language contains no constant or function symbols, then any $N \subseteq |M|$ determines a substructure \mathfrak{N} of M with domain $|\mathfrak{N}| = N$ by putting $R^\mathfrak{N} = R^M \cap N^n$.

Photo Credits

Bibliography