bas.1 Substructures

The domain of a structure \mathcal{M} may be a subset of another \mathcal{M}'. But we should obviously only consider \mathcal{M} a “part” of \mathcal{M}' if not only $|\mathcal{M}| \subseteq |\mathcal{M}'|$, but \mathcal{M} and \mathcal{M}' “agree” in how they interpret the symbols of the language at least on the shared part $|\mathcal{M}|$.

Definition bas.1. Given structures \mathcal{M} and \mathcal{M}' for the same language \mathcal{L}, we say that \mathcal{M} is a *substructure* of \mathcal{M}', and \mathcal{M}' an *extension* of \mathcal{M}, written $\mathcal{M} \subseteq \mathcal{M}'$, iff

1. $|\mathcal{M}| \subseteq |\mathcal{M}'|$,
2. For each constant $c \in \mathcal{L}$, $c^\mathcal{M} = c^\mathcal{M}'$;
3. For each n-place function symbol $f \in \mathcal{L}$, $f^\mathcal{M}(a_1, \ldots, a_n) = f^\mathcal{M}'(a_1, \ldots, a_n)$ for all $a_1, \ldots, a_n \in |\mathcal{M}|$.
4. For each n-place predicate symbol $R \in \mathcal{L}$, $\langle a_1, \ldots, a_n \rangle \in R^\mathcal{M}$ iff $\langle a_1, \ldots, a_n \rangle \in R^\mathcal{M}'$ for all $a_1, \ldots, a_n \in |\mathcal{M}|$.

Remark 1. If the language contains no constant or function symbols, then any $N \subseteq |\mathcal{M}|$ determines a substructure \mathcal{N} of \mathcal{M} with domain $|\mathcal{N}| = N$ by putting $R^\mathcal{N} = R^\mathcal{M} \cap N^n$.

Photo Credits

Bibliography