Reducts and Expansions

Often it is useful or necessary to compare languages which have symbols in common, as well as structures for these languages. The most common case is when all the symbols in a language L are also part of a language L', i.e., $L \subseteq L'$. An L-structure M can then always be expanded to an L'-structure by adding interpretations of the additional symbols while leaving the interpretations of the common symbols the same. On the other hand, from an L'-structure M' we can obtain an L-structure simply by “forgetting” the interpretations of the symbols that do not occur in L.

Definition bas.1. Suppose $L \subseteq L'$, M is an L-structure and M' is an L'-structure. M is the reduct of M' to L, and M' is an expansion of M to L' iff

1. $|M| = |M'|$
2. For every constant symbol $c \in L$, $c^M = c^{M'}$
3. For every function symbol $f \in L$, $f^M = f^{M'}$
4. For every predicate symbol $P \in L$, $P^M = P^{M'}$.

Proposition bas.2. If an L-structure M is a reduct of an L'-structure M', then for all L-sentences φ,

$$M \models \varphi \text{ iff } M' \models \varphi.$$

Proof. Exercise. \bbox

Problem bas.1. Prove Proposition bas.2.

Definition bas.3. When we have an L-structure M, and $L' = L \cup \{P\}$ is the expansion of L obtained by adding a single n-place predicate symbol P, and $R \subseteq |M|^n$ is an n-place relation, then we write (M, R) for the expansion M' of M with $P^{M'} = R$.

Photo Credits

Bibliography